Copyright © 2008 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability, trademark and document use rules apply.
This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current W3C publications and the latest revision of this technical report can be found in the W3C technical reports index at http://www.w3.org/TR/.
This document is being published as one of a set of 3 documents:
These First Public Working Drafts are based closely on the OWL 1.1 Submission, a set of documents developed outside of W3C as proposed refinements and extensions to the W3C's 2004 OWL Recommendation.
A number of features of OWL 1.1 are still under consideration by the OWL Working Group. Future versions of these documents may modify or drop descriptions of some features, or add specification of new features. Where specific issues have been identified on which the Working Group intends to make a decision, relevant parts of this document have been labeled with an "Editor's Note". Although the WG aims to maximise backwards compatibility with OWL 1.0, such compatibility cannot be guaranteed in all cases. The Working Group is publishing these drafts for public comment in order to inform the ongoing decision making process.
The OWL Working Group seeks public feedback on these Working Drafts. Please send your comments to public-owl-comments@w3.org (public archive). If possible, please offer specific changes to the text that would address your concern.
Publication as a Working Draft does not imply endorsement by the W3C Membership. This is a draft document and may be updated, replaced or obsoleted by other documents at any time. It is inappropriate to cite this document as other than work in progress.
This document was produced by a group operating under the 5 February 2004 W3C Patent Policy. W3C maintains a public list of any patent disclosures made in connection with the deliverables of the group; that page also includes instructions for disclosing a patent. An individual who has actual knowledge of a patent which the individual believes contains Essential Claim(s) must disclose the information in accordance with section 6 of the W3C Patent Policy.
Contents |
Editor's Note: See Issue-66 (mapping inconsistencies).
This document provides a mapping from the functional-style syntax of OWL 1.1 as given in [OWL 1.1 Specification] to the RDF exchange syntax for OWL 1.1 and vice versa. Every OWL 1.1 ontology can be serialized in RDF, so every OWL 1.1 ontology in RDF is a valid OWL Full ontology. The RDF syntax of OWL 1.1 is backwards-compatible with OWL DL, this is, every OWL DL ontology in RDF is a valid OWL 1.1 ontology. The semantics OWL 1.1 is defined for ontologies in the functional-style syntax. OWL 1.1 ontologies serialized in RDF/XML are interpreted by translating them into the functional-style syntax and applying the OWL 1.1 semantics [OWL 1.1 Semantics]. The syntax for triples used here is the one used in the RDF Semantics document. Full URIs are abbreviated using namespaces as usual.
Editor's Note: The actual namespaces used in the specification are subject to discussion and might change in future.
The following notation is used throughout this document:
Sequence S | Transformation T(S) | Main Node of T(S) |
---|---|---|
SEQ | rdf:nil | |
SEQ y1 ... yn | _:x rdf:type rdf:List _:x rdf:first T(y1) _:x rdf:rest T(SEQ y2 ... yn) | _:x |
Editor's Note: See Issue-2 (allDisjoint-RDF), Issue-68 (nonmonotonic mapping) and Issue-81 (reification, negative assertions).
As explained in [OWL 1.1 Specification], OWL 1.1 syntax is fully typed -- that is, from the syntax, one can immediately see what is the intendend usage of some symbol. OWL 1.0 syntax is not typed; rather, OWL 1.0 relies on explicit statements that determine the type of each URI. For backwards compatibility, OWL 1.1 uses OWL 1.0 vocabulary whenever there is no ambiguity. This is made precise using the following definition.
The type of a symbol S in an ontology O (in functional-style syntax), written Type(S,O), is defined as the smallest set such that
The above definition refers to a parse tree only for the axioms from O, and not from the axioms from some ontology that O imports. A symbol S in punned in an ontology O if Type(S,O) contains more than one element. Based on that, the following two conditions are defined:
The following shortcuts are used in the translation of OWL 1.1 ontologies into RDF:
Table 2 presents the operator T that translates an OWL 1.1 ontology in functional-style syntax into a set of RDF triples. This table does not consider axioms with annotations: the translation of such axioms is described in Section 2.1.
Functional-Style Syntax S | Transformation T(S) | Main Node of T(S) |
---|---|---|
Ontology(ontologyURI Import(oID1) ... Import(oIDk) Annotation(apID1 ct1) ... Annotation(apIDn ctn) axiom1 ... axiomm) | ontologyURI rdf:type owl:Ontology ontologyURI owl:imports oIDi 1 ≤ i ≤ k ontologyURI T(apIDi) T(cti) 1 ≤ i ≤ n T(axiomi) 1 ≤ i ≤ m | ontologyURI |
datatypeURI | datatypeURI rdf:type rdfs:Datatype | datatypeURI |
owlClassURI | owlClassURI rdf:type owl:Class | owlClassURI |
objectPropertyURI | objectPropertyURI rdf:type owl:ObjectProperty | objectPropertyURI |
dataPropertyURI | dataPropertyURI rdf:type owl:DatatypeProperty | dataPropertyURI |
annotationURI | annotationURI rdf:type owl:AnnotationProperty | annotationURI |
individualURI | individualURI | |
constant | constant | |
DataComplementOf(dr) | _:x rdf:type owl:DataRange _:x owl:complementOf T(dr) | _:x |
DataOneOf(ct1 ... ctn) | _:x rdf:type owl:DataRange _:x owl:oneOf T(SEQ ct1 ... ctn) | _:x |
DatatypeRestriction(dr facet1 ct1 ... facetn ctn) | _:x rdf:type owl:DataRange _:x owl11:onDataRange T(dr) _:x owl11:withRestrictions T(SEQ _:x1 ... _:xn) _:xi owl11:faceti cti 1 ≤ i ≤ n | _:x |
InverseObjectProperty(op) | _:x owl11:inverseObjectPropertyExpression T(op) | _:x |
ObjectUnionOf(c1 ... cn) | _:x rdf:type owl:Class _:x owl:unionOf T(SEQ c1 ... cn) | _:x |
ObjectIntersectionOf(c1 ... cn) | _:x rdf:type owl:Class _:x owl:intersectionOf T(SEQ c1 ... cn) | _:x |
ObjectComplementOf(c) | _:x rdf:type owl:Class _:x owl:complementOf T(c) | _:x |
ObjectOneOf(iID1 ... iIDn) | _:x rdf:type owl:Class _:x owl:oneOf T(SEQ iID1 ... iIDn) | _:x |
ObjectSomeValuesFrom(op c) | _:x rdf:type RESTRICTION[op] _:x owl:onProperty T(op) _:x owl:someValuesFrom T(c) | _:x |
ObjectAllValuesFrom(op c) | _:x rdf:type RESTRICTION[op] _:x owl:onProperty T(op) _:x owl:allValuesFrom T(c) | _:x |
ObjectExistsSelf(op) | _:x rdf:type owl11:SelfRestriction _:x owl:onProperty T(op) | _:x |
ObjectHasValue(op iID) | _:x rdf:type RESTRICTION[op] _:x owl:onProperty T(op) _:x owl:hasValue T(iID) | _:x |
ObjectMinCardinality(n op c) | _:x rdf:type RESTRICTION[op] _:x owl:minCardinality "n"^^xsd:nonNegativeInteger _:x owl:onProperty T(op) _:x owl11:onClass T(c) | _:x |
ObjectMaxCardinality(n op c) | _:x rdf:type RESTRICTION[op] _:x owl:maxCardinality "n"^^xsd:nonNegativeInteger _:x owl:onProperty T(op) _:x owl11:onClass T(c) | _:x |
ObjectExactCardinality(n op c) | _:x rdf:type RESTRICTION[op] _:x owl:cardinality "n"^^xsd:nonNegativeInteger _:x owl:onProperty T(op) _:x owl11:onClass T(c) | _:x |
ObjectMinCardinality(n op) | _:x rdf:type RESTRICTION[op] _:x owl:minCardinality "n"^^xsd:nonNegativeInteger _:x owl:onProperty T(op) | _:x |
ObjectMaxCardinality(n op) | _:x rdf:type RESTRICTION[op] _:x owl:maxCardinality "n"^^xsd:nonNegativeInteger _:x owl:onProperty T(op) | _:x |
ObjectExactCardinality(n op) | _:x rdf:type RESTRICTION[op] _:x owl:cardinality "n"^^xsd:nonNegativeInteger _:x owl:onProperty T(op) | _:x |
DataSomeValuesFrom(dp dr) | _:x rdf:type RESTRICTION[dp] _:x owl:onProperty T(dp) _:x owl:someValuesFrom T(dr) | _:x |
DataSomeValuesFrom(dp1 ... dpn dr) | _:x rdf:type RESTRICTION[dp] _:x owl:onProperty T(SEQ dp1 ... dpn) _:x owl:someValuesFrom T(dr) | _:x |
DataAllValuesFrom(dp dr) | _:x rdf:type RESTRICTION[dp] _:x owl:onProperty T(dp) _:x owl:allValuesFrom T(dr) | _:x |
DataAllValuesFrom(dp1 ... dpn dr) | _:x rdf:type RESTRICTION[dp] _:x owl:onProperty T(SEQ dp1 ... dpn) _:x owl:allValuesFrom T(dr) | _:x |
DataHasValue(dp ct) | _:x rdf:type RESTRICTION[dp] _:x owl:onProperty T(dp) _:x owl:hasValue T(ct) | _:x |
DataMinCardinality(n dp dr) | _:x rdf:type RESTRICTION[dp] _:x owl:minCardinality "n"^^xsd:nonNegativeInteger _:x owl:onProperty T(dp) _:x owl11:onDataRange T(dr) | _:x |
DataMaxCardinality(n dp dr) | _:x rdf:type RESTRICTION[dp] _:x owl:maxCardinality "n"^^xsd:nonNegativeInteger _:x owl:onProperty T(dp) _:x owl11:onDataRange T(dr) | _:x |
DataExactCardinality(n dp dr) | _:x rdf:type RESTRICTION[dp] _:x owl:cardinality "n"^^xsd:nonNegativeInteger _:x owl:onProperty T(dp) _:x owl11:onDataRange T(dr) | _:x |
DataMinCardinality(n dp) | _:x rdf:type RESTRICTION[dp] _:x owl:minCardinality "n"^^xsd:nonNegativeInteger _:x owl:onProperty T(dp) | _:x |
DataMaxCardinality(n dp) | _:x rdf:type RESTRICTION[dp] _:x owl:maxCardinality "n"^^xsd:nonNegativeInteger _:x owl:onProperty T(dp) | _:x |
DataExactCardinality(n dp) | _:x rdf:type RESTRICTION[dp] _:x owl:cardinality "n"^^xsd:nonNegativeInteger _:x owl:onProperty T(dp) | _:x |
EntityAnnotation(Datatype(dID) Annotation(apID1 ct1) ... Annotation(apIDn ctn)) | T(dID) T(apIDi) T(cti) 1 ≤ i ≤ n | |
EntityAnnotation(OWLClass(cID) Annotation(apID1 ct1) ... Annotation(apIDn ctn)) | T(cID) T(apIDi) T(cti) 1 ≤ i ≤ n | |
EntityAnnotation(ObjectProperty(opID) Annotation(apID1 ct1) ... Annotation(apIDn ctn)) | T(opID) T(apIDi) T(cti) 1 ≤ i ≤ n | |
EntityAnnotation(DataProperty(dpID) Annotation(apID1 ct1) ... Annotation(apIDn ctn)) | T(dpID) T(apIDi) T(cti) 1 ≤ i ≤ n | |
EntityAnnotation(Individual(iID) Annotation(apID1 ct1) ... Annotation(apIDn ctn)) | T(iID) T(apIDi) T(cti) 1 ≤ i ≤ n | |
SubClassOf(c1 c2) | T(c1) rdfs:subClassOf T(c2) | |
EquivalentClasses(c1 ... cn) | T(ci) owl:equivalentClass T(ci+1) 1 ≤ i ≤ n-1 | |
DisjointClasses(c1 ... cn) | T(ci) owl:disjointWith T(cj) 1 ≤ i, j ≤ n, i ≠ j | |
DisjointUnion(cID c1 ... cn) | T(cID) owl11:disjointUnionOf T(SEQ c1 ... cn) | |
SubObjectPropertyOf(op1 op2) | T(op1) SUBPROPERTYOF[op1,op2] T(op2) | |
SubObjectPropertyOf( subObjectPropertyChain(op1 ... opn) op) | _:x SUBPROPERTYOF[op1,...,opn,op] T(op) _:x owl11: propertyChain T(SEQ op1 ... opn) | |
EquivalentObjectProperties(op1 ... opn) | T(opi) EQUIVALENTPROPERTY[op1,...,opn] T(opi+1) 1 ≤ i ≤ n-1 | |
DisjointObjectProperties(op1 ... opn) | T(opi) owl11:disjointObjectProperties T(opj) 1 ≤ i, j ≤ n, i ≠ j | |
ObjectPropertyDomain(op c) | T(op) DOMAIN[op] T(c) | |
ObjectPropertyRange(op c) | T(op) RANGE[op] T(c) | |
InverseObjectProperties(op1 op2) | T(op1) owl:inverseOf T(op2) | |
TransitiveObjectProperty(op) | T(op) rdf:type owl:TransitiveProperty | |
FunctionalObjectProperty(op) | T(op) rdf:type FUNCTIONALPROPERTY[op] | |
InverseFunctionalObjectProperty(op) | T(op) rdf:type owl:InverseFunctionalProperty | |
ReflexiveObjectProperty(op) | T(op) rdf:type owl11:ReflexiveProperty | |
IrreflexiveObjectProperty(op) | T(op) rdf:type owl11:IrreflexiveProperty | |
SymmetricObjectProperty(op) | T(op) rdf:type owl:SymmetricProperty | |
AsymmetricObjectProperty(op) | T(op) rdf:type owl11:AsymmetricProperty | |
SubDataPropertyOf(dp1 dp2) | T(dp1) SUBPROPERTYOF[dp1,dp2] T(dp2) | |
EquivalentDataProperties(dp1 ... dpn) | T(dpi) EQUIVALENTPROPERTY[dp1,...,dpn] T(dpi+1) 1 ≤ i ≤ n-1 | |
DisjointDataProperties(dp1 ... dpn) | T(dpi) owl11:disjointDataProperties T(dpj) 1 ≤ i, j ≤ n, i ≠ j | |
DataPropertyDomain(dp c) | T(dp) DOMAIN[dp] T(c) | |
DataPropertyRange(dp dr) | T(op) RANGE[dp] T(dr) | |
FunctionalDataProperty(dp) | T(dp) rdf:type FUNCTIONALPROPERTY[dp] | |
SameIndividual(iID1 ... iIDn) | T(iIDi) owl:sameAs T(iIDi+1) 1 ≤ i ≤ n-1 | |
DifferentIndividuals(iID1 ... iIDn) | T(iIDi) owl:differentFrom T(iIDj) 1 ≤ i, j ≤ n, i ≠ j | |
ClassAssertion(iID c) | T(iID) rdf:type T(c) | |
ObjectPropertyAssertion(op iID1 iID2) | T(iID1) T(op) T(iID2) | |
NegativeObjectPropertyAssertion(op iID1 iID2) | _:x rdf:type owl11:NegativeObjectPropertyAssertion _:x rdf:subject T(iID1) _:x rdf:predicate T(op) _:x rdf:object T(iID2) | |
DataPropertyAssertion(dp iID ct) | T(iID) T(dp) T(ct) | |
NegativeDataPropertyAssertion(op iID ct) | _:x rdf:type owl11:NegativeDataPropertyAssertion _:x rdf:subject T(iID) _:x rdf:predicate T(dp) _:x rdf:object T(ct) | |
Declaration(Datatype(dID)) | T(dID) owl11:declaredAs rdfs:Datatype | |
Declaration(OWLClass(cID)) | T(cID) owl11:declaredAs owl:Class | |
Declaration(ObjectProperty(opID)) | T(opID) owl11:declaredAs owl:ObjectProperty | |
Declaration(DataProperty(dpID)) | T(dpID) owl11:declaredAs owl:DatatypeProperty | |
Declaration(Individual(iID)) | T(iID) owl11:declaredAs owl11:Individual |
Editor's Note: See Issue-12 (multi-triple annotations) and Issue-67 (reification).
Axioms with annotations are reified. If s p o is the RDF serialization of the corresponding axiom without annotations given in Table 2 and the axiom contains annotations Annotation(apIDi cti), 1 ≤ i ≤ n, then, instead of being serialized as s p o, the axiom is serialized as follows:
_:x rdf:type owl11:Axiom
_:x T(apIDi) T(cti) 1 ≤ i ≤ n
_:x rdf:subject s
_:x rdf:predicate p
_:x rdf:object o
Negative object and data property assertions are already reified so only the following triples are added if an assertion contains an annotation:
_:x T(apIDi) T(cti) 1 ≤ i ≤ n
Note that the Label and Comment annotations are just abbreviations. They are serialized into RDF triples by expanding the abbreviation and then applying the transformation from Table 2.
This section specifies how to translate a set of RDF triples G into an OWL 1.1 ontology in functional-style syntax O, if possible. The function Type(x) assigns a set of types to each resource node x in G (in this and all other definitions, the graph G is implicitly understood and is not specified explicitly) and is defined as the smallest set satisfying the conditions from Table 3.
If G contains a triple of this form... | ...then Type(x) must contain this URI. |
---|---|
x rdf:type owl:Class | owl:Class |
x rdf:type owl:Restriction | owl:Class |
x rdf:type owl11:ObjectRestriction | owl:Class |
x rdf:type owl11:DataRestriction | owl:Class |
x rdf:type owl:DataRange | owl:DataRange |
x rdf:type rdfs:Datatype | owl:DataRange |
x rdf:type owl:ObjectProperty | owl:ObjectProperty |
x rdf:type owl:TransitiveProperty | owl:ObjectProperty |
x rdf:type owl:SymmetricProperty | owl:ObjectProperty |
x rdf:type owl11:AsymmetricProperty | owl:ObjectProperty |
x rdf:type owl11:ReflexiveProperty | owl:ObjectProperty |
x rdf:type owl11:IrreflexiveProperty | owl:ObjectProperty |
x rdf:type owl11:FunctionalObjectProperty | owl:ObjectProperty |
x rdf:type owl:DatatypeProperty | owl:DatatypeProperty |
x rdf:type owl11:FunctionalDataProperty | owl:DatatypeProperty |
x rdf:type owl:AnnotationProperty | owl:AnnotationProperty |
x rdf:type owl11:Individual | owl11:Individual |
For a resource node x, the functions OnlyOP(x) and OnlyDP(x) are defined as follows:
The following partial functions are defined for each resource node x:
These functions are defined inductively by the following conditions. For the induction to correctly defined, it should be possible to order all resource nodes in G such that there are no cyclic dependencies in the second condition; if this is not possible, then G cannot be converted into an OWL 1.1 ontology.
Pattern | Object Property Expression |
---|---|
_:x owl11:inverseObjectPropertyExpression y | InverseObjectProperty( OP(y) ) |
Pattern | Data Range |
---|---|
_:x rdf:type owl:DataRange _:x owl:complementOf y | DataComplementOf( DRANGE(y) ) |
_:x rdf:type owl:DataRange _:x owl:oneOf T(SEQ ct1 ... ctn) | DataOneOf( ct1 ... ctn ) |
_:x rdf:type owl:DataRange _:x owl11:onDataRange y _:x owl11:withRestriction T(SEQ _:x1 ... _:xn) _:xi owl11:faceti cti for 1 ≤ i ≤ n | DatatypeRestriction( DRANGE(y) facet1 ct1 ... facetn ctn ) |
Pattern | Description |
---|---|
_:x rdf:type owl:Class _:x owl:unionOf T(SEQ y1 ... yn) | ObjectUnionOf( DESC(y1) ... DESC(yn) ) |
_:x rdf:type owl:Class _:x owl:intersectionOf T(SEQ y1 ... yn) | ObjectIntersectionOf( DESC(y1) ... DESC(yn) ) |
_:x rdf:type owl:Class _:x owl:complementOf y | ObjectComplementOf( DESC(y) ) |
_:x rdf:type owl:Class _:x owl:oneOf T(SEQ!y1 ...!yn) | ObjectOneOf( y1 ... yn ) |
_:x rdf:type owl11:SelfRestriction _:x owl:onProperty y | ObjectExistsSelf( OP(y) ) |
_:x rdf:type owl11:ObjectRestriction _:x owl:onProperty y _:x owl:hasValue!z | ObjectHasValue( OP(y) z ) |
_:x rdf:type owl:Restriction _:x owl:onProperty y _:x owl:hasValue!z { OnlyOP(y) = true } | ObjectHasValue( OP(y) z ) |
_:x rdf:type owl11:ObjectRestriction _:x owl:onProperty y _:x owl:someValuesFrom z | ObjectSomeValuesFrom( OP(y) DESC(z) ) |
_:x rdf:type owl:Restriction _:x owl:onProperty y _:x owl:someValuesFrom z { OnlyOP(y) = true } | ObjectSomeValuesFrom( OP(y) DESC(z) ) |
_:x rdf:type owl11:ObjectRestriction _:x owl:onProperty y _:x owl:allValuesFrom z | ObjectAllValuesFrom( OP(y) DESC(z) ) |
_:x rdf:type owl:Restriction _:x owl:onProperty y _:x owl:allValuesFrom z { OnlyOP(y) = true } | ObjectAllValuesFrom( OP(y) DESC(z) ) |
_:x rdf:type owl11:ObjectRestriction _:x owl:minCardinality "n"^^xsd:nonNegativeInteger _:x owl:onProperty y [ _:x owl11:onClass z ] | ObjectMinCardinality( n OP(y) [ DESC(z) ] ) |
_:x rdf:type owl:Restriction _:x owl:minCardinality "n"^^xsd:nonNegativeInteger _:x owl:onProperty y [ _:x owl11:onClass z ] { OnlyOP(y) = true } | ObjectMinCardinality( n OP(y) [ DESC(z) ] ) |
_:x rdf:type owl11:ObjectRestriction _:x owl:maxCardinality "n"^^xsd:nonNegativeInteger _:x owl:onProperty y [ _:x owl11:onClass z ] | ObjectMaxCardinality( n OP(y) [ DESC(z) ] ) |
_:x rdf:type owl:Restriction _:x owl:maxCardinality "n"^^xsd:nonNegativeInteger _:x owl:onProperty y [ _:x owl11:onClass z ] { OnlyOP(y) = true } | ObjectMaxCardinality( n OP(y) [ DESC(z) ] ) |
_:x rdf:type owl11:ObjectRestriction _:x owl:cardinality "n"^^xsd:nonNegativeInteger _:x owl:onProperty y [ _:x owl11:onClass z ] | ObjectExactCardinality( n OP(y) [ DESC(z) ] ) |
_:x rdf:type owl:Restriction _:x owl:cardinality "n"^^xsd:nonNegativeInteger _:x owl:onProperty y [ _:x owl11:onClass z ] { OnlyOP(y) = true } | ObjectExactCardinality( n OP(y) [ DESC(z) ] ) |
_:x rdf:type owl11:DataRestriction _:x owl:onProperty y _:x owl:hasValue ct | DataHasValue( DP(y) ct ) |
_:x rdf:type owl:Restriction _:x owl:onProperty y _:x owl:hasValue ct { OnlyDP(y) = true } | DataHasValue( DP(y) ct ) |
_:x rdf:type owl11:DataRestriction _:x owl:onProperty y _:x owl:someValuesFrom z | DataSomeValuesFrom( DP(y) DRANGE(z) ) |
_:x rdf:type owl:Restriction _:x owl:onProperty y _:x owl:someValuesFrom z { OnlyDP(y) = true } | DataSomeValuesFrom( DP(y) DRANGE(z) ) |
_:x rdf:type owl11:DataRestriction _:x owl:onProperty T(SEQ y1 ... yn) _:x owl:someValuesFrom z | DataSomeValuesFrom( DP(y1) ... DP(yn) DRANGE(z) ) |
_:x rdf:type owl:Restriction _:x owl:onProperty T(SEQ y1 ... yn) _:x owl:someValuesFrom z { OnlyDP(y) = true } | DataSomeValuesFrom( DP(y1) ... DP(yn) MDRANGE(z) ) |
_:x rdf:type owl11:DataRestriction _:x owl:onProperty y _:x owl:allValuesFrom z | DataAllValuesFrom( DP(y) DRANGE(z) ) |
_:x rdf:type owl:Restriction _:x owl:onProperty y _:x owl:allValuesFrom z { OnlyDP(y) = true } | DataAllValuesFrom( DP(y) DRANGE(z) ) |
_:x rdf:type owl11:DataRestriction _:x owl:onProperty T(SEQ y1 ... yn) _:x owl:allValuesFrom z | DataAllValuesFrom( DP(y1) ... DP(yn) DRANGE(z) ) |
_:x rdf:type owl:Restriction _:x owl:onProperty T(SEQ y1 ... yn) _:x owl:allValuesFrom z { OnlyDP(y) = true } | DataAllValuesFrom( DP(y1) ... DP(yn) DRANGE(z) ) |
_:x rdf:type owl11:DataRestriction _:x owl:minCardinality "n"^^xsd:nonNegativeInteger _:x owl:onProperty y [ _:x owl11:onDataRange z ] | DataMinCardinality( n DP(y) [ DRANGE(z) ] ) |
_:x rdf:type owl:Restriction _:x owl:minCardinality "n"^^xsd:nonNegativeInteger _:x owl:onProperty y [ _:x owl11:onDataRange z ] { OnlyDP(y) = true } | DataMinCardinality( n DP(y) [ DRANGE(z) ] ) |
_:x rdf:type owl11:DataRestriction _:x owl:maxCardinality "n"^^xsd:nonNegativeInteger _:x owl:onProperty y [ _:x owl11:onDataRange z ] | DataMaxCardinality( n DP(y) [ DRANGE(z) ] ) |
_:x rdf:type owl:Restriction _:x owl:maxCardinality "n"^^xsd:nonNegativeInteger _:x owl:onProperty y [ _:x owl11:onDataRange z ] { OnlyDP(y) = true } | DataMaxCardinality( n DP(y) [ DRANGE(z) ] ) |
_:x rdf:type owl11:DataRestriction _:x owl:cardinality "n"^^xsd:nonNegativeInteger _:x owl:onProperty y [ _:x owl11:onDataRange z ] | DataExactCardinality( n DP(y) [ DRANGE(z) ] ) |
_:x rdf:type owl:Restriction _:x owl:cardinality "n"^^xsd:nonNegativeInteger _:x owl:onProperty y [ _:x owl11:onDataRange z ] { OnlyDP(y) = true } | DataExactCardinality( n DP(y) [ DRANGE(z) ] ) |
The ontology O, corresponding to the set of RDF triples G, is the samllest set containing the axioms occurring in the second column of Table 7 for each triple pattern from the first column.
Pattern | Axiom |
---|---|
!x!yi cti for 1 ≤ i ≤ n { rdfs:Datatype ∈ Type(x) and OnlyAP(yi) = true for 1 ≤ i ≤ } | EntityAnnotation( Datatype(x) Annotation( y1 ct1 ) ... Annotation( yn ctn ) ) |
!x!yi cti for 1 ≤ i ≤ n { owl:Class ∈ Type(x) and OnlyAP(yi) = true for 1 ≤ i ≤ } | EntityAnnotation( OWLClass(x) Annotation( y1 ct1 ) ... Annotation( yn ctn ) ) |
!x!yi cti for 1 ≤ i ≤ n { owl:ObjectProperty ∈ Type(x) and OnlyAP(yi) = true for 1 ≤ i ≤ } | EntityAnnotation( ObjectProperty(x) Annotation( y1 ct1 ) ... Annotation( yn ctn ) ) |
!x!yi cti for 1 ≤ i ≤ n { owl:DatatypeProperty ∈ Type(x) and OnlyAP(yi) = true for 1 ≤ i ≤ } | EntityAnnotation( DataProperty(x) Annotation( y1 ct1 ) ... Annotation( yn ctn ) ) |
!x!yi cti for 1 ≤ i ≤ n { owl11:Individual ∈ Type(x) and OnlyAP(yi) = true for 1 ≤ i ≤ } | EntityAnnotation( Individual(x) Annotation( y1 ct1 ) ... Annotation( yn ctn ) ) |
x rdfs:subClassOf y | SubClassOf( DESC(x) DESC(y) ) |
x owl:equivalentClass y | EquivalentClasses( DESC(x) DESC(y) ) |
x owl:disjointWith y | DisjointClasses( DESC(x) DESC(y) ) |
x owl11:disjointUnionOf T(SEQ y1 ... yn) | DisjointUnion( DESC(x) DESC(y1) ... DESC(yn) ) |
x owl11:subObjectPropertyOf y | SubObjectPropertyOf( OP(x) OP(y) ) |
x rdfs:subPropertyOf y { OnlyOP(x) = true and OnlyOP(y) = true } | SubObjectPropertyOf( OP(x) OP(y) ) |
_:x owl11:subObjectPropertyOf y _:x owl11:propertyChain T(SEQ x1 ... xn) | SubObjectPropertyOf( subObjectPropertyChain( OP(x1) ... OP(xn) ) OP(y) ) |
_:x rdfs:subPropertyOf y _:x owl11:propertyChain T(SEQ x1 ... xn) | SubObjectPropertyOf( subObjectPropertyChain( OP(x1) ... OP(xn) ) OP(y) ) |
x owl11:equivalentObjectProperty y | EquivalentObjectProperties( OP(x) OP(y) ) |
x owl:equivalentProperty y { OnlyOP(x) = true and OnlyOP(y) = true } | EquivalentObjectProperties( OP(x) OP(y) ) |
x owl11:disjointObjectProperties y | DisjointObjectProperties( OP(x) OP(y) ) |
x owl11:objectPropertyDomain y | ObjectPropertyDomain( OP(x) DESC(y) ) |
x rdfs:domain y { OnlyOP(x) = true } | ObjectPropertyDomain( OP(x) DESC(y) ) |
x owl11:objectPropertyRange y | ObjectPropertyRange( OP(x) DESC(y) ) |
x rdfs:range y { OnlyOP(x) = true } | ObjectPropertyRange( OP(x) DESC(y) ) |
x owl:inverseOf y | InverseObjectProperties( OP(x) OP(y) ) |
x rdf:type owl:TransitiveProperty | TransitiveObjectProperty( OP(x) ) |
x rdf:type owl11:FunctionalObjectProperty | FunctionalObjectProperty( OP(x) ) |
x rdf:type owl:FunctionalProperty { OnlyOP(x) = true } | FunctionalObjectProperty( OP(x) ) |
x rdf:type owl:InverseFunctionalProperty | InverseFunctionalObjectProperty( OP(x) ) |
x rdf:type owl11:ReflexiveProperty | ReflexiveObjectProperty( OP(x) ) |
x rdf:type owl11:IrreflexiveProperty | IrreflexiveObjectProperty( OP(x) ) |
x rdf:type owl:SymmetricProperty | SymmetricObjectProperty( OP(x) ) |
x rdf:type owl11:AsymmetricProperty | AsymmetricObjectProperty( OP(x) ) |
x owl11:subDataPropertyOf y | SubDataPropertyOf( DP(x) DP(y) ) |
x rdfs:subPropertyOf y { OnlyDP(x) = true and OnlyDP(y) = true } | SubDataPropertyOf( DP(x) DP(y) ) |
x owl11:equivalentDataProperty y | EquivalentDataProperties(dp1 ... dpn) |
x owl:equivalentProperty y { OnlyDP(x) = true and OnlyDP(y) = true } | EquivalentDataProperties(dp1 ... dpn) |
x owl11:disjointDataProperties y | DisjointDataProperties( DP(x) DP(y) ) |
x owl11:dataPropertyDomain y | DataPropertyDomain( DP(x) DESC(y) ) |
x rdfs:domain y { OnlyDP(x) = true } | DataPropertyDomain( DP(x) DESC(y) ) |
x owl11:dataPropertyRange y | DataPropertyRange( DP(x) DRANGE(y) ) |
x rdfs:range y { OnlyDP(x) = true } | DataPropertyRange( DP(x) DRANGE(y) ) |
x rdf:type owl11:FunctionalDataProperty | FunctionalDataProperty( DP(x) ) |
x rdf:type owl:FunctionalProperty { OnlyDP(x) = true } | FunctionalDataProperty( DP(x) ) |
!x owl:sameAs !y | SameIndividual( x y ) |
!x owl:differentFrom !y | DifferentIndividuals( x y ) |
!x rdf:type y { y is not a part of RDF(S) or OWL 1.1 vocabulary } | ClassAssertion( x DESC(y) ) |
!x!y!z { none of x, y, and z is a part of RDF(S) or OWL 1.1 vocabulary } { owl:AnnotationProperty is not in Type(y) } | ObjectPropertyAssertion( OP(y) x z ) |
_:x rdf:type owl11:NegativeObjectPropertyAssertion _:x rdf:subject!w _:x rdf:predicate!y _:x rdf:object!z | NegativeObjectPropertyAssertion( OP(y) w z ) |
!x!y ct { neither x not y is a part of RDF(S) or OWL 1.1 vocabulary } { owl:AnnotationProperty is not in Type(y) } | DataPropertyAssertion( DP(y) x ct ) |
_:x rdf:type owl11:NegativeDataPropertyAssertion _:x rdf:subject!w _:x rdf:predicate!y _:x rdf:object ct | NegativeDataPropertyAssertion( DP(y) w ct ) |
!x owl11:declaredAs rdfs:Datatype | Declaration( Datatype(x) ) |
!x owl11:declaredAs owl:Class | Declaration( OWLClass(x) ) |
!x owl11:declaredAs owl:ObjectProperty | Declaration( ObjectProperty(x) ) |
!x owl11:declaredAs owl:DatatypeProperty | Declaration( DataProperty(x) ) |
!x owl11:declaredAs owl11:Individual | Declaration( Individual(x) ) |
_:x rdf:type owl11:Axiom _:x!yi cti 1 ≤ i ≤ n _:x rdf:subject s _:x rdf:predicate!p _:x rdf:object o | The result is the axiom obtained by matching the triple pattern s p o. The axiom contains the following annotations: Annotation( y1 ct1 ) ... Annotation( yn ctn ) ) |
If G contains some triple that is not matched by any triple pattern (including the patterns used to define Type(x)), then G cannot be translated into an OWL 1.1 ontology.