ML.Recommend 1.0.0

dotnet add package ML.Recommend --version 1.0.0                
NuGet\Install-Package ML.Recommend -Version 1.0.0                
This command is intended to be used within the Package Manager Console in Visual Studio, as it uses the NuGet module's version of Install-Package.
<PackageReference Include="ML.Recommend" Version="1.0.0" />                
For projects that support PackageReference, copy this XML node into the project file to reference the package.
paket add ML.Recommend --version 1.0.0                
#r "nuget: ML.Recommend, 1.0.0"                
#r directive can be used in F# Interactive and Polyglot Notebooks. Copy this into the interactive tool or source code of the script to reference the package.
// Install ML.Recommend as a Cake Addin
#addin nuget:?package=ML.Recommend&version=1.0.0

// Install ML.Recommend as a Cake Tool
#tool nuget:?package=ML.Recommend&version=1.0.0                

ML.Recommend

We inherit and expand the machine learning library of Microsoft ML.NET, and proceed to build a new recommendation model with named ML.Recommend, which will use Matrix Factorization and combine Time Factor for Product Recommendation. The system will provide a complete machine learning model with a set of interactive classes libraries, data and class models are conducted on user reviews for each product with time interaction and the system will recommend products respectively based on the expected score to customers that user configured. The data is experimented on the UELStore e-commerce website (http://ecom.uelstore.com/), the trained models are provided for other researchers to use together with the source code of the ML.Recommend model published by us, the researchers can reuse and expand the features for this model.

Mapping JSon Dataset with Model class (https://github.com/thanhtd32/ML.Recommend/tree/main/Dataset):

# Dataset Model class Description Number of object
1 customers.json Customer List of Customer dataset 678
2 products.json Product List of Product dataset 732
3 ratings.json Rating List of Rating dataset 130754

This Research from KMOU (Korea Maritime & Ocean University) - Data Science Lab - Room 407.

Authors: Duy Thanh Tran, Prof. Jun-Ho Huh

Any question, please free to contact me: thanhtd@uel.edu.vn

My full name: TRAN DUY THANH

Blog study coding: https://duythanhcse.wordpress.com/

ML.Recommend - model class

alt text

RecommendEngine is a center class of the ML.Recommend

GUI Demo:

Test ML.Recommend model

alt text

Test recommendation products for customers:

alt text

ML.Recommend - How to use?

Install nuget package

Install-Package ML.Recommend -ProjectName YourProject

Full dataset : https://github.com/thanhtd32/ML.Recommend/tree/main/Dataset

Full source code demo in Windows Desktop https://github.com/thanhtd32/ML.Recommend/tree/main/ML.RecommendDemo

Full source code demo in Web .net core https://github.com/thanhtd32/ML.Recommend/tree/main/ML.RecommendWeb

Windows Desktop demo

using ML.Recommend.Data;
using ML.Recommend.Error;
using ML.Recommend.Predict;
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Text.Json;
using System.Threading.Tasks;
using System.Windows.Forms;

namespace ML.RecommendDemo
{
    public partial class frmDemoRecommend : Form
    {
        List<Rating> ratings;
        RecommendEngine engine= new RecommendEngine();
        string folder = "Models";
        List<Customer> customers;
        List<Product> products;
        public frmDemoRecommend()
        {
            InitializeComponent();
        }

        private void frmDemoRecommend_Load(object sender, EventArgs e)
        {
            LoadModelIntoCombo();
        }

        private void btnLoadCustomer_Click(object sender, EventArgs e)
        {
            if (openFileDialog1.ShowDialog() == DialogResult.OK)
            {
                customers= DataUtils.LoadCustomers(openFileDialog1.FileName);
                cboCustomer.DataSource = customers;
                cboCustomer.ValueMember = "Id";
                cboCustomer.DisplayMember = "NickName";
            }
        }

        private void btnLoadProduct_Click(object sender, EventArgs e)
        {
            if(openFileDialog1.ShowDialog()==DialogResult.OK)
            {
                string fileName = openFileDialog1.FileName;
                string jsonString = File.ReadAllText(fileName);
                products = JsonSerializer.Deserialize<List<Product>>(jsonString)!;
                cboProduct.DataSource = products;
                cboProduct.ValueMember = "Id";
                cboProduct.DisplayMember = "Name";
            }
            
        }

        private void btnLoadRating_Click(object sender, EventArgs e)
        {
            if (openFileDialog1.ShowDialog() == DialogResult.OK)
            {
                ratings=DataUtils.LoadRatings(openFileDialog1.FileName,dtpFrom.Value,dtpTo.Value);
                MessageBox.Show("Import ratings dataset is successfully!", "Info", MessageBoxButtons.OK, MessageBoxIcon.Information);
                frmRating frm= new frmRating();
                frm.gvRating.DataSource = ratings;
                frm.lblToTal.Text ="There are "+ ratings.Count + " ratings!";
                frm.Show();
            }
        }

        private void rad1_CheckedChanged(object sender, EventArgs e)
        {
            if (rad1.Checked)
                txtTestRatio.Text = rad1.Text;
        }

        private void rad2_CheckedChanged(object sender, EventArgs e)
        {
            if (rad2.Checked)
                txtTestRatio.Text = rad2.Text;
        }

        private void rad3_CheckedChanged(object sender, EventArgs e)
        {
            if (rad3.Checked)
                txtTestRatio.Text = rad3.Text;
        }

        private void rad4_CheckedChanged(object sender, EventArgs e)
        {
            if (rad4.Checked)
                txtTestRatio.Text = rad4.Text;
        }

        private void rad5_CheckedChanged(object sender, EventArgs e)
        {
            if (rad5.Checked)
                txtTestRatio.Text = rad5.Text;
        }

        private void btnImportDataset_Click(object sender, EventArgs e)
        {
            try
            {
                double testRatio = double.Parse(txtTestRatio.Text);
                bool ret= engine.ImportAndSplitDataset(ratings, testRatio);
                if (ret)
                {
                    lblImportDatasetMessage.Text = "Import && split dataset for train and test set sucessful!";
                }
            }
            catch(RecommendError ex)
            {
                MessageBox.Show(ex.Message);
            }
            
        }

        private void btnBuildModel_Click(object sender, EventArgs e)
        {
            try
            {
                int iterator=int.Parse(txtIterator.Text);
                int approximationRank = int.Parse(txtRank.Text);
                bool ret = engine.BuildModel(iterator, approximationRank);
                if (ret)
                {
                    lblBuildModelMessage.Text = "Build model sucessful!";
                }
            }
            catch (RecommendError ex)
            {
                MessageBox.Show(ex.Message);
            }
        }

        private void btnEvaluateModel_Click(object sender, EventArgs e)
        {
            try
            {
                Metric metric = engine.Evaluate();
                txtMAE.Text=Math.Round(metric.MAE,2).ToString();
                txtMSE.Text= Math.Round(metric.MSE, 2).ToString();
                txtRMSE.Text= Math.Round(metric.RMSE, 2).ToString();    
                txtSquared.Text= Math.Round(metric.RSquared, 2).ToString();
            }
            catch (RecommendError ex)
            {
                MessageBox.Show(ex.Message);
            }
        }

        private void btnSaveModel_Click(object sender, EventArgs e)
        {
            try
            {
                if (Directory.Exists(folder) == false)
                {
                    Directory.CreateDirectory(folder);
                }
                string path = folder + "\\ML.Recommend-" + DateTime.Now.ToString("ddMMyyyy-hhmmss") + ".zip";
                bool ret = engine.SaveModel(path);
                if (ret)
                    lblSaveModelMessage.Text = "Save Model successfully";
                else
                    lblSaveModelMessage.Text = "Save Model failed";
                LoadModelIntoCombo();
            }
            catch (RecommendError ex)
            {
                MessageBox.Show(ex.Message);
            }           
        }
        private void LoadModelIntoCombo()
        {
            cboModel.Items.Clear();

            if (Directory.Exists(folder) == false)
            {
                return;
            }
            string[] files = Directory.GetFiles(folder);
            foreach (string file in files)
            {
                FileInfo fi = new FileInfo(file);
                cboModel.Items.Add(fi.Name);
            }
        }

        private void btnPredict_Click(object sender, EventArgs e)
        {
            try
            {
                Customer customer = cboCustomer.SelectedItem as Customer;
                Product product = cboProduct.SelectedItem as Product;

                var testInput = new Rating { CustomerID = customer.Id, ProductID = product.Id };

                var output = engine.Predict(testInput);

                double expectedScore=double.Parse(txtExpectedScore.Text);   

                if (Math.Round(output.Score, 1) >= expectedScore)
                {
                    lblResult.Text = "Score=" + Math.Round(output.Score, 1) + ", Product [" + product.Id+"-"+product.Name+"]" + " is recommended for user [" + customer.Id+" - "+customer.NickName+"]";
                }
                else
                {
                    lblResult.Text = "Score=" + Math.Round(output.Score, 1) + ", Product [" + product.Id + "-" + product.Name + "]" + " is not recommended for user [" + customer.Id + " - " + customer.NickName + "]";
                }
            }
            catch (RecommendError ex)
            {
                MessageBox.Show(ex.Message);
            }
        }

        private void groupBox1_Enter(object sender, EventArgs e)
        {

        }

        private void btnLoadModel_Click(object sender, EventArgs e)
        {
            try
            {
                if (cboModel.SelectedIndex == -1)
                return;
                string modelName = folder + "\\" + cboModel.Text;
                bool ret = engine.LoadModel(modelName);
                if (ret)
                    lblLoadModelMessage.Text = "Load Model successfully";
                else
                    lblLoadModelMessage.Text = "Load Model failed";
            }
            catch (RecommendError ex)
            {
                MessageBox.Show(ex.Message);
            }
        }

        private void btnAdvanced_Click(object sender, EventArgs e)
        {
            frmAdvanced frm = new frmAdvanced();
            frm.customers = customers;
            frm.products = products;
            frm.Show();
        }
    }
}

Web .net core Demo

Web Project structure:

alt text

in this web project, We use ML.Recommend-1.zip to test

Web list of customers:

alt text

Web recommendation products for customers:

alt text

CustomerController.cs

using Microsoft.AspNetCore.Mvc;
using ML.Recommend.Data;
using ML.Recommend.Predict;
using System.Text.Json;

namespace ML.RecommendWeb.Controllers
{
    public class CustomerController : Controller
    {
        private readonly IWebHostEnvironment _webHostEnvironment;
        public CustomerController(IWebHostEnvironment webHostEnvironment)
        {
            _webHostEnvironment = webHostEnvironment;
        }
        public IActionResult Index()
        {
            string webRootPath = _webHostEnvironment.WebRootPath;
            string contentRootPath = _webHostEnvironment.ContentRootPath;
            string path = "";
            path = Path.Combine(contentRootPath, "Dataset");
            string customerFile= Path.Combine(path,"customers.json");
            string jsonString = System.IO.File.ReadAllText(customerFile);
            List<Customer> customers = JsonSerializer.Deserialize<List<Customer>>(jsonString)!;
            return View(customers);
        }
        public IActionResult Recommends(int id)
        {
            RecommendEngine engine = new RecommendEngine();
            string webRootPath = _webHostEnvironment.WebRootPath;
            string contentRootPath = _webHostEnvironment.ContentRootPath;
            string path = "";
            path = Path.Combine(contentRootPath, "Models");
            string modelPath= Path.Combine(path, "ML.Recommend-1.zip");
            engine.LoadModel(modelPath);
            
            path = "";
            path = Path.Combine(contentRootPath, "Dataset");
            string customerFile = Path.Combine(path, "customers.json");
            string jsonString = System.IO.File.ReadAllText(customerFile);
            List<Customer> customers = JsonSerializer.Deserialize<List<Customer>>(jsonString)!;
            Customer customer = customers.FirstOrDefault(c => c.Id == id);

            path = "";
            path = Path.Combine(contentRootPath, "Dataset");
            string productFile = Path.Combine(path, "products.json");
            jsonString = System.IO.File.ReadAllText(productFile);
            List<Product> products = JsonSerializer.Deserialize<List<Product>>(jsonString)!;
            
            float es = 3.5f;
            List<Product> rProducts = engine.Predict(customer, products,es);
            ViewData["customer"] = customer;
            return View(rProducts);
        }
    }
}

Views/Customer/Index.cshtml

@model IEnumerable<ML.Recommend.Data.Customer>

@{
    ViewData["Title"] = "Index";
}
<p>
    List of Customers:
</p>
<table class="table">
    <thead>
        <tr>
            <th>
                @Html.DisplayNameFor(model => model.Id)
            </th>
            <th>
                @Html.DisplayNameFor(model => model.NickName)
            </th>
            <th></th>
        </tr>
    </thead>
    <tbody>
@foreach (var item in Model) {
        <tr>
            <td>
                @Html.DisplayFor(modelItem => item.Id)
            </td>
            <td>
                @Html.DisplayFor(modelItem => item.NickName)
            </td>
            <td>
                |@Html.ActionLink("Recommendation", "Recommends", new { id=item.Id }) |                
            </td>
        </tr>
}
    </tbody>
</table>

Views/Customer/Recommends.cshtml

@using ML.Recommend.Data
@model IEnumerable<ML.Recommend.Data.Product>

@{
    ViewData["Title"] = "Recommends";
}
@{
    Customer customer =(Customer) ViewData["customer"];
}

<p>
    List Recommended Products for Customer: <font color='blue'>@Html.Raw(customer .Id +" -"+customer .NickName) </font> 
</p>
<table class="table">
    <thead>
        <tr>
            <th>
                @Html.DisplayNameFor(model => model.Id)
            </th>
            <th>
                @Html.DisplayNameFor(model => model.Name)
            </th>
            <th>
                @Html.DisplayNameFor(model => model.UnitPrice)
            </th>
            <th>
                @Html.DisplayNameFor(model => model.Score)
            </th>
            <th></th>
        </tr>
    </thead>
    <tbody>
@foreach (var item in Model) {
        <tr>
            <td>
                @Html.DisplayFor(modelItem => item.Id)
            </td>
            <td>
                @Html.DisplayFor(modelItem => item.Name)
            </td>
            <td>
                @Html.DisplayFor(modelItem => item.UnitPrice)
            </td>
            <td>
                @Html.DisplayFor(modelItem => item.Score)
            </td>
            <td>
              
            </td>
        </tr>
}
    </tbody>
</table>

Product Compatible and additional computed target framework versions.
.NET net6.0 is compatible.  net6.0-android was computed.  net6.0-ios was computed.  net6.0-maccatalyst was computed.  net6.0-macos was computed.  net6.0-tvos was computed.  net6.0-windows was computed.  net7.0 was computed.  net7.0-android was computed.  net7.0-ios was computed.  net7.0-maccatalyst was computed.  net7.0-macos was computed.  net7.0-tvos was computed.  net7.0-windows was computed.  net8.0 was computed.  net8.0-android was computed.  net8.0-browser was computed.  net8.0-ios was computed.  net8.0-maccatalyst was computed.  net8.0-macos was computed.  net8.0-tvos was computed.  net8.0-windows was computed.  net9.0 was computed.  net9.0-android was computed.  net9.0-browser was computed.  net9.0-ios was computed.  net9.0-maccatalyst was computed.  net9.0-macos was computed.  net9.0-tvos was computed.  net9.0-windows was computed. 
Compatible target framework(s)
Included target framework(s) (in package)
Learn more about Target Frameworks and .NET Standard.

NuGet packages

This package is not used by any NuGet packages.

GitHub repositories

This package is not used by any popular GitHub repositories.

Version Downloads Last updated
1.0.0 318 5/29/2022