CLExtract: Recovering Highly Corrupted DVB/GSE Satellite Stream with Contrastive Learning - NDSS Symposium

Minghao Lin (University of Colorado Boulder), Minghao Cheng (Independent Researcher), Dongsheng Luo (Florida International University), Yueqi Chen (University of Colorado Boulder) Presenter: Minghao Lin

Since satellite systems are playing an increasingly important role in our civilization, their security and privacy weaknesses are more and more concerned. For example, prior work demonstrates that the communication channel between maritime VSAT and ground segment can be eavesdropped on using consumer-grade equipment. The stream decoder GSExtract developed in this prior work performs well for most packets but shows incapacity for corrupted streams. We discovered that such stream corruption commonly exists in not only Europe and North Atlantic areas but also Asian areas. In our experiment, using GSExtract, we are only able to decode 2.1% satellite streams we eavesdropped on in Asia.

Therefore, in this work, we propose to use a contrastive learning technique with data augmentation to decode and recover such highly corrupted streams. Rather than rely on critical information in corrupted streams to search for headers and perform decoding, contrastive learning directly learns the fea- tures of packet headers at different protocol layers and identifies them in a stream sequence. By filtering them out, we can extract the innermost data payload for further analysis. Our evaluation shows that this new approach can successfully recover 71-99% eavesdropped data hundreds of times faster speed than GSExtract. Besides, the effectiveness of our approach is not largely damaged when stream corruption becomes more severe.

View More Papers

Extrapolating Formal Analysis to Uncover Attacks in Bluetooth Passkey...

Mohit Kumar Jangid (The Ohio State University), Yue Zhang (Computer Science & Engineering, Ohio State University), Zhiqiang Lin (The Ohio State University)

Read More

Lightning Community Shout-Outs to:

(1) Jonathan Petit, Secure ML Performance Benchmark (Qualcomm) (2) David Balenson, The Road to Future Automotive Research Datasets: PIVOT Project and Community Workshop (USC Information Sciences Institute) (3) Jeremy Daily, CyberX Challenge Events (Colorado State University) (4) Mert D. Pesé, DETROIT: Data Collection, Translation and Sharing for Rapid Vehicular App Development (Clemson University) (5) Ning…

Read More

CHKPLUG: Checking GDPR Compliance of WordPress Plugins via Cross-language...

Faysal Hossain Shezan (University of Virginia), Zihao Su (University of Virginia), Mingqing Kang (Johns Hopkins University), Nicholas Phair (University of Virginia), Patrick William Thomas (University of Virginia), Michelangelo van Dam (in2it), Yinzhi Cao (Johns Hopkins University), Yuan Tian (UCLA)

Read More

Why do Internet Devices Remain Vulnerable? A Survey with...

Tamara Bondar, Hala Assal, AbdelRahman Abdou (Carleton University)

Read More