dewolf: Improving Decompilation by leveraging User Surveys - NDSS Symposium

Steffen Enders, Eva-Maria C. Behner, Niklas Bergmann, Mariia Rybalka, Elmar Padilla (Fraunhofer FKIE, Germany), Er Xue Hui, Henry Low, Nicholas Sim (DSO National Laboratories, Singapore)

Analyzing third-party software such as malware is a crucial task for security analysts. Although various approaches for automatic analysis exist and are the subject of ongoing research, analysts often have to resort to manual static analysis to get a deep understanding of a given binary sample. Since the source code of provided samples is rarely available, analysts regularly employ decompilers for easier and faster comprehension than analyzing a binary’s disassembly.

In this paper, we introduce our decompilation approach dewolf. We describe a variety of improvements over the previous academic state-of-the-art decompiler and some novel algorithms to enhance readability and comprehension, focusing on manual analysis. To evaluate our approach and to obtain a better insight into the analysts’ needs, we conducted three user surveys. The results indicate that dewolf is suitable for malware comprehension and that its output quality noticeably exceeds Ghidra and Hex-Rays in certain aspects. Furthermore, our results imply that decompilers aiming at manual analysis should be highly configurable to respect individual user preferences. Additionally, future decompilers should not necessarily follow the unwritten rule to stick to the code-structure dictated by the assembly in order to produce readable output. In fact, the few cases where dewolf already cracks this rule leads to its results considerably exceeding other decompilers. We publish a prototype implementation of dewolf and all survey results [1], [2].

View More Papers

Ethical Challenges in Blockchain Network Measurement Research

Yuzhe Tang (Syracuse University), Kai Li (San Diego State University), and Yibo Wang and Jiaqi Chen (Syracuse University)

Read More

Privacy-Preserving Database Fingerprinting

Tianxi Ji (Texas Tech University), Erman Ayday (Case Western Reserve University), Emre Yilmaz (University of Houston-Downtown), Ming Li (CSE Department The University of Texas at Arlington), Pan Li (Case Western Reserve University)

Read More

An Exploratory study of Malicious Link Posting on Social...

Muhammad Hassan, Mahnoor Jameel, Masooda Bashir (University of Illinois at Urbana Champaign)

Read More

Rapid Vulnerability Mitigation with Security Workarounds

Zhen Huang (Pennsylvania State University), Gang Tan (Pennsylvania State University)

Read More