Cell adhesion. Competition between nonspecific repulsion and specific bonding
- PMID: 6743742
- PMCID: PMC1434996
- DOI: 10.1016/S0006-3495(84)84252-6
Cell adhesion. Competition between nonspecific repulsion and specific bonding
Abstract
We develop a thermodynamic calculus for the modeling of cell adhesion. By means of this approach, we are able to compute the end results of competition between the formation of specific macromolecular bridges and nonspecific repulsion arising from electrostatic forces and osmotic (steric stabilization) forces. Using this calculus also allows us to derive in a straightforward manner the effects of cell deformability, the Young's modulus for stretching of bridges, diffusional mobility of receptors, heterogeneity of receptors, variation in receptor number, and the strength of receptor-receptor binding. The major insight that results from our analysis concerns the existence and characteristics of two phase transitions corresponding, respectively, to the onset of stable cell adhesion and to the onset of maximum cell-cell or cell-substrate contact. We are also able to make detailed predictions of the equilibrium contact area, equilibrium number of bridges, and the cell-cell or cell-substrate separation distance. We illustrate how our approach can be used to improve the analysis of experimental data, by means of two concrete examples.
Similar articles
-
Morphology of cell-substratum adhesion. Influence of receptor heterogeneity and nonspecific forces.Cell Biophys. 1992 Apr-Jun;20(2-3):177-222. doi: 10.1007/BF02823657. Cell Biophys. 1992. PMID: 1285299 Review.
-
Detailed mechanics of membrane-membrane adhesion and separation. II. Discrete kinetically trapped molecular cross-bridges.Biophys J. 1985 Jul;48(1):185-92. doi: 10.1016/S0006-3495(85)83771-1. Biophys J. 1985. PMID: 4016208 Free PMC article.
-
Detailed mechanics of membrane-membrane adhesion and separation. I. Continuum of molecular cross-bridges.Biophys J. 1985 Jul;48(1):175-83. doi: 10.1016/S0006-3495(85)83770-X. Biophys J. 1985. PMID: 4016207 Free PMC article.
-
Thermodynamics of short-term cell adhesion in vitro.Biophys J. 1988 May;53(5):759-69. doi: 10.1016/S0006-3495(88)83156-4. Biophys J. 1988. PMID: 3390519 Free PMC article.
-
Cell contact-dependent signaling.Dev Biol. 1996 Dec 15;180(2):445-54. doi: 10.1006/dbio.1996.0318. Dev Biol. 1996. PMID: 8954717 Review. No abstract available.
Cited by
-
Adhesion mapping of chemically modified and poly(ethylene oxide)-grafted glass surfaces.Colloids Surf A Physicochem Eng Asp. 1999 Aug 1;154(1-2):53-64. doi: 10.1016/S0927-7757(98)00908-X. Colloids Surf A Physicochem Eng Asp. 1999. PMID: 22267896 Free PMC article.
-
T cell microvilli simulations show operation near packing limit and impact on antigen recognition.Biophys J. 2022 Nov 1;121(21):4128-4136. doi: 10.1016/j.bpj.2022.09.030. Epub 2022 Sep 30. Biophys J. 2022. PMID: 36181267 Free PMC article.
-
Model system for cell adhesion mediated by weak carbohydrate-carbohydrate interactions.J Am Chem Soc. 2012 Feb 22;134(7):3326-9. doi: 10.1021/ja210304j. Epub 2012 Feb 10. J Am Chem Soc. 2012. PMID: 22296574 Free PMC article.
-
Morphology of cell-substratum adhesion. Influence of receptor heterogeneity and nonspecific forces.Cell Biophys. 1992 Apr-Jun;20(2-3):177-222. doi: 10.1007/BF02823657. Cell Biophys. 1992. PMID: 1285299 Review.
-
I-domain of lymphocyte function-associated antigen-1 mediates rolling of polystyrene particles on ICAM-1 under flow.Biophys J. 2005 Nov;89(5):3577-88. doi: 10.1529/biophysj.104.057729. Epub 2005 Aug 12. Biophys J. 2005. PMID: 16100282 Free PMC article.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources