Application of Machine Learning for eutrophication analysis and algal bloom prediction in an urban river: A 10-year study of the Han River, South Korea - PubMed Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Observational Study
. 2021 Nov 25:797:149040.
doi: 10.1016/j.scitotenv.2021.149040. Epub 2021 Jul 17.

Application of Machine Learning for eutrophication analysis and algal bloom prediction in an urban river: A 10-year study of the Han River, South Korea

Affiliations
Observational Study

Application of Machine Learning for eutrophication analysis and algal bloom prediction in an urban river: A 10-year study of the Han River, South Korea

Quang Viet Ly et al. Sci Total Environ. .

Abstract

The increasing release of nutrients to aquatic environments has led to great concern regarding eutrophication and the risk of unwanted algal blooms. Based on observational data of 20 water quality parameters measured on a monthly basis at 40 stations from 2011 to 2020, this study applied different Machine Learning (ML) algorithms to suggest the best option for algal bloom prediction in the Han River, a large river in South Korea. Eight different ML algorithms were categorized into several groups of statistical learning, regression family, and deep learning, and were then compared for their suitability to predict the chlorophyll-derived trophic index (TSI-Chla). ML algorithms helped identify the most important water quality parameters contributing to algal bloom prediction. The ML results confirmed that eutrophication and algal proliferation were governed by the complex interplay between nutrients (nitrogen and phosphorus), organic contaminants, and environmental factors. Of the models tested, the adaptive neuro-fuzzy inference system (ANFIS) exhibited the best performance owing to its consistent and outperforming prediction both quantitatively (i.e., via regression) and qualitatively (i.e., via classification), which was evidenced by the lowest value of mean absolute error (MAE) of 0.09, and the highest F1-score, Recall and Precision of 0.97, 0.98 and 0.96, respectively. In a further step, a representative web application was constructed to assist common users to predict the trophic status of the Han River. This study demonstrated that ML techniques are not only promising for highly accurate water quality modeling of urban rivers, but also reduce time and labor intensity for experiments, which decreases the number of monitored water quality parameters, providing further insights into the driving factors of water quality deterioration. They ultimately help devise proactive strategies for sustainable water management.

Keywords: Complex watershed; Deep Learning; Fuzzy System; Statistical Learning; Trophic Status; Water pollution.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

Publication types

LinkOut - more resources