Decoding the mechanical fingerprints of biomolecules
- PMID: 26498560
- DOI: 10.1017/S0033583515000220
Decoding the mechanical fingerprints of biomolecules
Abstract
The capacity of biological macromolecules to act as exceedingly sophisticated and highly efficient cellular machines - switches, assembly factors, pumps, or motors - is realized through their conformational transitions, that is, their folding into distinct shapes and selective binding to other molecules. Conformational transitions can be induced, monitored, and manipulated by pulling individual macromolecules apart with an applied force. Pulling experiments reveal, for a given biomolecule, the relationship between applied force and molecular extension. Distinct signatures in the force-extension relationship identify a given biomolecule and thus serve as the molecule's 'mechanical fingerprints'. But, how can these fingerprints be decoded to uncover the energy barriers crossed by the molecule in the course of its conformational transition, as well as the associated timescales? This review summarizes a powerful class of approaches to interpreting single-molecule force spectroscopy measurements - namely, analytically tractable approaches. On the fundamental side, analytical theories have the power to reveal the unifying principles underneath the bewildering diversity of biomolecules and their behaviors. On the practical side, analytical expressions that result from these theories are particularly well suited for a direct fit to experimental data, yielding the important parameters that govern biological processes at the molecular level.
Keywords: Single molecule force spectroscopy; activation energy barrier; energy landscape; transition rate.
Similar articles
-
On artifacts in single-molecule force spectroscopy.Proc Natl Acad Sci U S A. 2015 Nov 17;112(46):14248-53. doi: 10.1073/pnas.1519633112. Epub 2015 Nov 4. Proc Natl Acad Sci U S A. 2015. PMID: 26540730 Free PMC article.
-
A transformation for the mechanical fingerprints of complex biomolecular interactions.Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):16432-7. doi: 10.1073/pnas.1309101110. Epub 2013 Sep 23. Proc Natl Acad Sci U S A. 2013. PMID: 24062442 Free PMC article.
-
Free energy surfaces from single-molecule force spectroscopy.Acc Chem Res. 2005 Jul;38(7):504-13. doi: 10.1021/ar040148d. Acc Chem Res. 2005. PMID: 16028884
-
Protein functional landscapes, dynamics, allostery: a tortuous path towards a universal theoretical framework.Q Rev Biophys. 2010 Aug;43(3):295-332. doi: 10.1017/S0033583510000119. Epub 2010 Sep 7. Q Rev Biophys. 2010. PMID: 20819242 Review.
-
Stretching single polysaccharides and proteins using atomic force microscopy.Chem Soc Rev. 2012 May 7;41(9):3523-34. doi: 10.1039/c2cs15329g. Epub 2012 Feb 13. Chem Soc Rev. 2012. PMID: 22331199 Review.
Cited by
-
Next Generation Methods for Single-Molecule Force Spectroscopy on Polyproteins and Receptor-Ligand Complexes.Front Mol Biosci. 2020 May 19;7:85. doi: 10.3389/fmolb.2020.00085. eCollection 2020. Front Mol Biosci. 2020. PMID: 32509800 Free PMC article. Review.
-
Heterogeneous and rate-dependent streptavidin-biotin unbinding revealed by high-speed force spectroscopy and atomistic simulations.Proc Natl Acad Sci U S A. 2019 Apr 2;116(14):6594-6601. doi: 10.1073/pnas.1816909116. Epub 2019 Mar 19. Proc Natl Acad Sci U S A. 2019. PMID: 30890636 Free PMC article.
-
Using Single-Molecule Chemo-Mechanical Unfolding to Simultaneously Probe Multiple Structural Parameters in Protein Folding.Methods Protoc. 2019 Apr 20;2(2):32. doi: 10.3390/mps2020032. Methods Protoc. 2019. PMID: 31164612 Free PMC article.
-
Using Optical Tweezers to Monitor Allosteric Signals Through Changes in Folding Energy Landscapes.Methods Mol Biol. 2022;2478:483-510. doi: 10.1007/978-1-0716-2229-2_18. Methods Mol Biol. 2022. PMID: 36063332 Free PMC article.
-
Immune cells use active tugging forces to distinguish affinity and accelerate evolution.Proc Natl Acad Sci U S A. 2023 Mar 14;120(11):e2213067120. doi: 10.1073/pnas.2213067120. Epub 2023 Mar 10. Proc Natl Acad Sci U S A. 2023. PMID: 36897986 Free PMC article.
LinkOut - more resources
Full Text Sources
Other Literature Sources