Mechanical unfolding of RNA hairpins
- PMID: 15749822
- PMCID: PMC1100749
- DOI: 10.1073/pnas.0408314102
Mechanical unfolding of RNA hairpins
Abstract
Mechanical unfolding trajectories, generated by applying constant force in optical-tweezer experiments, show that RNA hairpins and the P5abc subdomain of the group I intron unfold reversibly. We use coarse-grained Go-like models for RNA hairpins to explore forced unfolding over a broad range of temperatures. A number of predictions that are amenable to experimental tests are made. At the critical force, the hairpin jumps between folded and unfolded conformations without populating any discernible intermediates. The phase diagram in the force-temperature (f, T) plane shows that the hairpin unfolds by an all-or-none process. The cooperativity of the unfolding transition increases dramatically at low temperatures. Free energy of stability, obtained from time averages of mechanical unfolding trajectories, coincides with ensemble averages, which establishes ergodicity. The hopping time between the native basin of attraction (NBA) and the unfolded basin increases dramatically along the phase boundary. Thermal unfolding is stochastic, whereas mechanical unfolding occurs in "quantized steps" with great variations in the step lengths. Refolding times, upon force quench, from stretched states to the NBA are at least an order of magnitude greater than folding times by temperature quench. Upon force quench from stretched states, the NBA is reached in at least three stages. In the initial stages, the mean end-to-end distance decreases nearly continuously, and there is a sudden transition to the NBA only in the last stage. Because of the generality of the results, we propose that similar behavior should be observed in force quench refolding of proteins.
Figures
Similar articles
-
Forced-unfolding and force-quench refolding of RNA hairpins.Biophys J. 2006 May 15;90(10):3410-27. doi: 10.1529/biophysj.105.078030. Epub 2006 Feb 10. Biophys J. 2006. PMID: 16473903 Free PMC article.
-
Mechanical unfolding of RNA: from hairpins to structures with internal multiloops.Biophys J. 2007 Feb 1;92(3):731-43. doi: 10.1529/biophysj.106.093062. Epub 2006 Oct 6. Biophys J. 2007. PMID: 17028142 Free PMC article.
-
Probing the mechanical folding kinetics of TAR RNA by hopping, force-jump, and force-ramp methods.Biophys J. 2006 Jan 1;90(1):250-60. doi: 10.1529/biophysj.105.068049. Epub 2005 Oct 7. Biophys J. 2006. PMID: 16214869 Free PMC article.
-
Determination of thermodynamics and kinetics of RNA reactions by force.Q Rev Biophys. 2006 Nov;39(4):325-60. doi: 10.1017/S0033583506004446. Epub 2006 Oct 16. Q Rev Biophys. 2006. PMID: 17040613 Free PMC article. Review.
-
Unfolding single RNA molecules: bridging the gap between equilibrium and non-equilibrium statistical thermodynamics.Q Rev Biophys. 2005 Nov;38(4):291-301. doi: 10.1017/S0033583506004239. Epub 2006 Jul 3. Q Rev Biophys. 2005. PMID: 16817984 Review.
Cited by
-
Generalized Manning Condensation Model Captures the RNA Ion Atmosphere.Phys Rev Lett. 2015 Jun 26;114(25):258105. doi: 10.1103/PhysRevLett.114.258105. Epub 2015 Jun 26. Phys Rev Lett. 2015. PMID: 26197147 Free PMC article.
-
Free-energy landscape of a hyperstable RNA tetraloop.Proc Natl Acad Sci U S A. 2016 Jun 14;113(24):6665-70. doi: 10.1073/pnas.1603154113. Epub 2016 May 27. Proc Natl Acad Sci U S A. 2016. PMID: 27233937 Free PMC article.
-
Magnesium fluctuations modulate RNA dynamics in the SAM-I riboswitch.J Am Chem Soc. 2012 Jul 25;134(29):12043-53. doi: 10.1021/ja301454u. Epub 2012 Jul 16. J Am Chem Soc. 2012. PMID: 22612276 Free PMC article.
-
Statistical mechanical modeling of RNA folding: from free energy landscape to tertiary structural prediction.Nucleic Acids Mol Biol. 2012;27:185-212. doi: 10.1007/978-3-642-25740-7_10. Epub 2012 Apr 7. Nucleic Acids Mol Biol. 2012. PMID: 27293312 Free PMC article.
-
Coarse-grained model of nucleic acid bases.J Comput Chem. 2010 Jun;31(8):1644-55. doi: 10.1002/jcc.21448. J Comput Chem. 2010. PMID: 20020472 Free PMC article.
References
-
- Onoa, B. & Tinoco, I., Jr. (2004) Curr. Opin. Struct. Biol. 14, 374–379. - PubMed
-
- Treiber, D. K. & Williamson, J. R. (2001) Curr. Opin. Struct. Biol. 11, 309–314. - PubMed
-
- Thirumalai, D., Lee, N., Woodson, S. A. & Klimov, D. K. (2001) Annu. Rev. Phys. Chem. 52, 751–762. - PubMed
-
- Koculi, E., Lee, N., Thirumalai, D. & Woodson, S. A. (2004) J. Mol. Biol. 341, 27–36. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources