Computer Science ›› 2022, Vol. 49 ›› Issue (8): 165-171.doi: 10.11896/jsjkx.210600140
• Computer Graphics & Multimedia • Previous Articles Next Articles
CHEN Kun-feng, PAN Zhi-song, WANG Jia-bao, SHI Lei, ZHANG Jin
CLC Number:
[1]GHEISSARI N,SEBASTIAN T B,HARTLEY R.Person reidentification using spatiotemporal appearance[C]//2006 IEEEComputer Society Conference on Computer Vision and Pattern Recognition(CVPR’06).IEEE,2006:1528-1535. [2]FARENZENA M,BAZZANI L,PERINA A,et al.Person re-identification by symmetry-driven accumulation of local features[C]//2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.IEEE,2010:2360-2367. [3]GRAY D,TAO H.Viewpoint invariant pedestrian recognition with an ensemble of localized features[C]//European Confe-rence on Computer Vision.Berlin:Springer,2008:262-275. [4]HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [5]PAISITKRIANGKRAI S,SHEN C,VAN DEN HENGEL A.Learning to rank in person re-identification with metric ensembles[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2015:1846-1855. [6]SHEN Y,XIAO T,LI H,et al.End-to-end deep kronecker-pro-duct matching for person re-identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:6886-6895. [7]ZHENG Z,YANG X,YU Z,et al.Joint discriminative and gene-rative learning for person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:2138-2147. [8]WEI L,ZHANG S,GAO W,et al.Person transfer gan to bridge domain gap for person re-identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:79-88. [9]RISTANI E,SOLERA F,ZOU R,et al.Performance measures and a data set for multi-target,multi-camera tracking[C]//European Conference on Computer Vision.Cham:Springer,2016:17-35. [10]ZHENG L,SHEN L,TIAN L,et al.Scalable person re-identification:A benchmark[C]//Proceedings of the IEEE InternationalConference on Computer Vision.2015:1116-1124. [11]HOU R,CHANG H,MA B,et al.Temporal complementarylearning for video person re-identification[C]//European Conference on Computer Vision.Cham:Springer,2020:388-405. [12]FAN C,PENG Y,CAO C,et al.Gaitpart:Temporal part-based model for gait recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:14225-14233. [13]LORENZO-NAVARRO J,CASTRILLÓN-SANTANA M,HERNÁNDEZ-SOSA D.An study on re-identification in RGB-D imagery[C]//International Workshop on Ambient Assisted Li-ving.Berlin:Springer,2012:200-207. [14]HAQUE A,ALAHI A,FEI-FEI LI F F.Recurrent attentionmodels for depth-based person identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:1229-1238. [15]WU A,ZHENG W S,LAI J H.Robust depth-based person re-identification[J].IEEE Transactions on Image Processing,2017,26(6):2588-2603. [16]JIA X,MENG Z,KATIPALLY K,et al.Clothing ChangeAware Person Identification[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).IEEE Computer Society,2018. [17]YANG Q Z,WU A C,ZHENG W S.Person Re-identification by Contour Sketch under Moderate Clothing Change[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2021,3(6):2029-2046. [18]LI Y J,LUO Z Y,WENG X S,et al.Learning shape representations for clothing variations in person re-identification[J].ar-Xiv:2003.07340,2020. [19]ZHANG J,LI Y,CHEN F Q,et al.X-Net:A Binocular Summation Network for Foreground Segmentation[J].IEEE Access,2019,7:1412-71422. [20]BLAKE R,WILSON H.Binocular Vision[J].Vision Research,2011,51(7):754-770. [21]LOWE D G.Distinctive Image Features from Scale-InvariantKeypoints[J].International Journal of Computer Vision,2004,60(2):91-110. [22]REDMON J,FARHADI A.Yolov3:An incremental improve-ment[J].arXiv:1804.02767,2018. [23]XIE S,TU Z.Holistically-nested edge detection[C]//Procee-dings of the IEEE International Conference on Computer Vision.2015:1395-1403. [24]HU J,LI S,ALBANIE S.Squeeze-and-Excitation Networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).IEEE,2018. [25]YE M,SHEN J,LIN G,et al.Deep learning for person re-identification:A survey and outlook[J/OL].IEEE Transactions on Pattern Analysis and Machine Intelligence,2021.https://ieeexplore.ieee.org/abstract/document/9336268. [26]XIA B N,GONG Y,ZHANG Y,et al.Second-order non-local attention networks for person re-identification[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:3760-3769. [27]YU F,KOLTUN V.Multi-scale context aggregation by dilated convolutions[J].arXiv:1511.07122,2015. [28]OJALA T,PIETIKÄINEN M,HARWOOD D.A comparative study of texture measures with classification based on featured distributions[J].Pattern Recognition,1996,29(1):51-59. [29]DALAL N,TRIGGS B.Histograms of oriented gradients forhuman detection[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR’05).IEEE,2005:886-893. [30]KOESTINGER M,HIRZER M,WOHLHART P,et al.Large scale metric learning from equivalence constraints[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2012:2288-2295. [31]SUN Y,ZHENG L,YANG Y,et al.Beyond part models:Person retrieval with refined part pooling (and a strong convolutional baseline)[C]//Proceedings of the European Conference on Computer Vision (ECCV).2018:480-496. |
[1] | WU Zi-yi, LI Shao-mei, JIANG Meng-han, ZHANG Jian-peng. Ontology Alignment Method Based on Self-attention [J]. Computer Science, 2022, 49(9): 215-220. |
[2] | FANG Yi-qiu, ZHANG Zhen-kun, GE Jun-wei. Cross-domain Recommendation Algorithm Based on Self-attention Mechanism and Transfer Learning [J]. Computer Science, 2022, 49(8): 70-77. |
[3] | JIN Fang-yan, WANG Xiu-li. Implicit Causality Extraction of Financial Events Integrating RACNN and BiLSTM [J]. Computer Science, 2022, 49(7): 179-186. |
[4] | MENG Yue-bo, MU Si-rong, LIU Guang-hui, XU Sheng-jun, HAN Jiu-qiang. Person Re-identification Method Based on GoogLeNet-GMP Based on Vector Attention Mechanism [J]. Computer Science, 2022, 49(7): 142-147. |
[5] | ZHANG Jia-hao, LIU Feng, QI Jia-yin. Lightweight Micro-expression Recognition Architecture Based on Bottleneck Transformer [J]. Computer Science, 2022, 49(6A): 370-377. |
[6] | ZHAO Dan-dan, HUANG De-gen, MENG Jia-na, DONG Yu, ZHANG Pan. Chinese Entity Relations Classification Based on BERT-GRU-ATT [J]. Computer Science, 2022, 49(6): 319-325. |
[7] | HAN Jie, CHEN Jun-fen, LI Yan, ZHAN Ze-cong. Self-supervised Deep Clustering Algorithm Based on Self-attention [J]. Computer Science, 2022, 49(3): 134-143. |
[8] | ZHAO Yue, YU Zhi-bin, LI Yong-chun. Cross-attention Guided Siamese Network Object Tracking Algorithm [J]. Computer Science, 2022, 49(3): 163-169. |
[9] | YANG Xiao-yu, YIN Kang-ning, HOU Shao-qi, DU Wen-yi, YIN Guang-qiang. Person Re-identification Based on Feature Location and Fusion [J]. Computer Science, 2022, 49(3): 170-178. |
[10] | HU Yan-li, TONG Tan-qian, ZHANG Xiao-yu, PENG Juan. Self-attention-based BGRU and CNN for Sentiment Analysis [J]. Computer Science, 2022, 49(1): 252-258. |
[11] | ZHANG Xin-feng, SONG Bo. A Person Re-identification Method Based on Improved Triple Loss and Feature Fusion [J]. Computer Science, 2021, 48(9): 146-152. |
[12] | HU De-feng, ZHANG Chen-xi, WANG Shi-tao, ZHAO Qin-pei, LI Jiang-feng. Intelligent Prediction Model of Tool Wear Based on Deep Signal Processing and Stacked-ResGRU [J]. Computer Science, 2021, 48(6): 175-183. |
[13] | CHENG Xu, CUI Yi-ping, SONG Chen, CHEN Bei-jing, ZHENG Yu-hui, SHI Jin-gang. Object Tracking Algorithm Based on Temporal-Spatial Attention Mechanism [J]. Computer Science, 2021, 48(4): 123-129. |
[14] | WANG Xi, ZHANG Kai, LI Jun-hui, KONG Fang, ZHANG Yi-tian. Generation of Image Caption of Joint Self-attention and Recurrent Neural Network [J]. Computer Science, 2021, 48(4): 157-163. |
[15] | DONG Hu-sheng, ZHONG Shan, YANG Yuan-feng, SUN Xun, GONG Sheng-rong. Person Re-identification by Region Correlated Deep Feature Learning with Multiple Granularities [J]. Computer Science, 2021, 48(12): 269-277. |
|