Computer Science ›› 2022, Vol. 49 ›› Issue (5): 43-49.doi: 10.11896/jsjkx.210400047
• Computer Graphics & Multimedia • Previous Articles Next Articles
XU Hua-chi1, SHI Dian-xi1,2,3, CUI Yu-ning2, JING Luo-xi2, LIU Cong2
CLC Number:
[1]GALLEGO G,DELBRUCK T,ORCHARD G,et al.Event-based vision:A survey[J].arXiv:1904.08405,2019. [2]SANG Y G,LI R H,LI Y Q,et al.Research on neuromorphic vision sensor and its applications[J].Chinese Journal on Internet of Things,2019,3(4):63-71. [3]LICHTSTEINER P,POSCH C,DELBRUCK T.A 128×128120 dB 15 μs Latency Asynchronous Temporal Contrast Vision Sensor[J].IEEE Journal of Solid-state Circuits,2008,43(2):566-576. [4]LI J N,TIAN Y H.Recent Advances in Neuromorphic Vision Sensors:A Survey[J].Chinese Journal of Computers,2021,44(6):1258-1286. [5]CUI Y,SHI D,ZHANG Y,et al.Selective Feature Network for Object Detection[C]//2020 International Joint Conference on Neural Networks (IJCNN).IEEE,2020:1-8. [6]CUI Y,SHI D,ZHANG Y,et al.IDNet:A Single-Shot Object Detector Based on Feature Fusion[C]//2020 IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI).IEEE,2020:1137-1144. [7]ORCHARD G,MEYER C,ETIENNE-CUMMINGS R,et al.HFirst:a temporal approach to object recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(10):2028-2040. [8]YAN C D,WANG X,ZUO Y F,et al.Visualization and noise reduction algorithm based on event camera[J].Journal of Beijing University of Aeronautics and Astronautics,2021,47(2):342-350. [9]LAGORCE X,ORCHARD G,GALLUPPI F,et al.Hots:a hierarchy of event-based time-surfaces for pattern recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,39(7):1346-1359. [10]GALLEGO G,LUND J E A,MUEGGLER E,et al.Event-based,6-DOF camera tracking from photometric depth maps[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,40(10):2402-2412. [11]JIANG M,LIU Z,YU L.A Denoising Algorithm for Eent Came-ras Based on Low-Dimensional Manifold Constraint[J].Journal of Signal Processing,2019,35(10):1753-1761. [12]KIM H,LEUTENEGGER S,DAVISON A J.Real-time 3D reconstruction and 6-DoF tracking with an event camera[C]//European Conference on Computer Vision.Cham:Springer,2016:349-364. [13]REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:Unified,real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:779-788. [14]SIRONI A,BRAMBILLA M,BOURDIS N,et al.HATS:Histograms of averaged time surfaces for robust event-based object classification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:1731-1740. [15]ZHOU X L,LIU Q Q,CHAN S X,et al.Event Camera-based Visual Tracking Algorithms:a Survey[J].Journal of Chinese Computer Systems,2020,41(11):2325-2332. [16]MAQUEDA A I,LOQUERCIO A,GALLEGO G,et al.Event-based vision meets deep learning on steering prediction for self-driving cars[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:5419-5427. [17]GEHRIG D,LOQUERCIO A,DERPANIS K G,et al.End-to-end learning of representations for asynchronous event-based data[C]//Proceedings of the IEEE International Conference on Computer Vision.2019:5633-5643. [18]MA Y Y,YE Z H,LIU K H,et al.Event-based Visual Localization and Mapping Algorithms:A Survey[J].ACTA Automatica Sinica,2020,46:1-11. [19]ZHU A Z,YUAN L,CHANEY K,et al.EV-FlowNet:Self-supervised optical flow estimation for event-based cameras[J].arXiv:1802.06898,2018. [20]REBECQ H,HORSTSCHÄFER T,GALLEGO G,et al.Evo:A geometric approach to event-based 6-dof parallel tracking and mapping in real time[J].IEEE Robotics and Automation Letters,2016,2(2):593-600. [21]REBECQ H,RANFTL R,KOLTUN V,et al.Events-to-video:Bringing modern computer vision to event cameras[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2019:3857-3866. [22]HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [23]GIRSHICK R.Fast r-cnn[C]//Proceedings of the IEEE International Conference on Computer Vision.2015:1440-1448. [24]LEE J H,DELBRUCK T,PFEIFFER M.Training deep spiking neural networks using backpropagation[J].Frontiers in Neuroscience,2016,10:508. [25]PÉREZ-CARRASCO J A,ZHAO B,SERRANO C,et al.Mapping from frame-driven to frame-free event-driven vision systems by low-rate rate coding and coincidence processing-application to feedforward ConvNets[J].IEEE transactions on Pattern Analysis and Machine Intelligence,2013,35(11):2706-2719. [26]AMIR A,TABA B,BERG D,et al.A low power,fully event-based gesture recognition system[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:7243-7252. [27]ORCHARD G,BENOSMAN R,ETIENNE-CUMMINGS R,et al.A spiking neural network architecture for visual motion estimation[C]//2013 IEEE Biomedical Circuits and Systems Conference (BioCAS).IEEE,2013:298-301. [28]NEIL D,PFEIFFER M,LIU S C.Phased lstm:Accelerating recurrent network training for long or event-based sequences[J].Advances in Neural Information Processing Systems,2016,29:3882-3890. [29]SHRESTHA S B,ORCHARD G.Slayer:Spike layer error reassignment in time[J].arXiv:1810.08646,2018. [30]ACHARYA J,PADALA V,BASU A.Spiking neural network based region proposal networks for neuromorphic vision sensors[C]//2019 IEEE International Symposium on Circuits and Systems (ISCAS).IEEE,2019:1-5. [31]ZHU A Z,YUAN L,CHANEY K,et al.Unsupervised event-based learning of optical flow,depth,and egomotion[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2019:989-997. [32]REBECQ H,RANFTL R,KOLTUN V,et al.High speed and high dynamic range video with an event camera[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2021,43(6):1964-1980. [33]CANNICI M,CICCONE M,ROMANONI A,et al.A differen-tiable recurrent surface for asynchronous event-based data[C]//European Conference on Computer Vision.Cham:Springer,2020:136-152. [34]MESSIKOMMER N,GEHRIG D,LOQUERCIO A,et al.Event-based Asynchronous Sparse Convolutional Networks[J].arXiv:2003.09148,2020. [35]GALLEGO G,FORSTER C,MUEGGLER E,et al.Event-based camera pose tracking using a generative event model[J].arXiv:1510.01972,2015. [36]TULYAKOV S,FLEURET F,KIEFEL M,et al.Learning anevent sequence embedding for dense event-based deep stereo[C]//Proceedings of the IEEE International Conference on Computer Vision.2019:1527-1537. [37]HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:7132-7141. [38]ORCHARD G,JAYAWANT A,COHEN G K,et al.Converting static image datasets to spiking neuromorphic datasets using saccades[J].Frontiers in Neuroscience,2015,9:437. [39]LI F F,FERGUS R,PERONA P.One-shot learning of object categories[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(4):594-611. [40]POSCH C,MATOLIN D,WOHLGENANNT R.A QVGA 143 dB dynamic range frame-free PWM image sensor with lossless pixel-level video compression and time-domain CDS[J].IEEE Journal of Solid-State Circuits,2010,46(1):259-275. [41]SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J].arXiv:1409.1556,2014. [42]IOFFE S,SZEGEDY C.Batch normalization:Accelerating deep network training by reducing internal covariate shift[J].arXiv:1502.03167,2015. [43]RUSSAKOVSKY O,DENG J,SU H,et al.Imagenet large scale visual recognition challenge[J].International Journal of Computer Vision,2015,115(3):211-252. [44]KINGMA D P,BA J.Adam:A method for stochastic optimization[J].arXiv:1412.6980,2014. [45]RAMESH B,YANG H,ORCHARD G M,et al.Dart:distribution aware retinal transform for event-based cameras[J].IEEE transactions on Pattern Analysis and Machine Intelligence,2020,12(1):2767-2780. [46]CANNICI M,CICCONE M,ROMANONI A,et al.Asynchro-nous convolutional networks for object detection in neuromorphic cameras[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops.2019. [47]DENG Y,LI Y,CHEN H.AMAE:Adaptive Motion-AgnosticEncoder for Event-Based Object Classification[J].IEEE Robotics and Automation Letters,2020,5(3):4596-4603. |
[1] | WU Zi-yi, LI Shao-mei, JIANG Meng-han, ZHANG Jian-peng. Ontology Alignment Method Based on Self-attention [J]. Computer Science, 2022, 49(9): 215-220. |
[2] | CAO Xiao-wen, LIANG Mei-yu, LU Kang-kang. Fine-grained Semantic Reasoning Based Cross-media Dual-way Adversarial Hashing Learning Model [J]. Computer Science, 2022, 49(9): 123-131. |
[3] | ZHOU Le-yuan, ZHANG Jian-hua, YUAN Tian-tian, CHEN Sheng-yong. Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion [J]. Computer Science, 2022, 49(9): 155-161. |
[4] | XU Yong-xin, ZHAO Jun-feng, WANG Ya-sha, XIE Bing, YANG Kai. Temporal Knowledge Graph Representation Learning [J]. Computer Science, 2022, 49(9): 162-171. |
[5] | QIN Qi-qi, ZHANG Yue-qin, WANG Run-ze, ZHANG Ze-hua. Hierarchical Granulation Recommendation Method Based on Knowledge Graph [J]. Computer Science, 2022, 49(8): 64-69. |
[6] | CHEN Yong-quan, JIANG Ying. Analysis Method of APP User Behavior Based on Convolutional Neural Network [J]. Computer Science, 2022, 49(8): 78-85. |
[7] | ZHU Cheng-zhang, HUANG Jia-er, XIAO Ya-long, WANG Han, ZOU Bei-ji. Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism [J]. Computer Science, 2022, 49(8): 113-119. |
[8] | WEI Kai-xuan, FU Ying. Re-parameterized Multi-scale Fusion Network for Efficient Extreme Low-light Raw Denoising [J]. Computer Science, 2022, 49(8): 120-126. |
[9] | SHEN Xiang-pei, DING Yan-rui. Multi-detector Fusion-based Depth Correlation Filtering Video Multi-target Tracking Algorithm [J]. Computer Science, 2022, 49(8): 184-190. |
[10] | YAN Jia-dan, JIA Cai-yan. Text Classification Method Based on Information Fusion of Dual-graph Neural Network [J]. Computer Science, 2022, 49(8): 230-236. |
[11] | CHEN Ming-xin, ZHANG Jun-bo, LI Tian-rui. Survey on Attacks and Defenses in Federated Learning [J]. Computer Science, 2022, 49(7): 310-323. |
[12] | ZHANG Yuan, KANG Le, GONG Zhao-hui, ZHANG Zhi-hong. Related Transaction Behavior Detection in Futures Market Based on Bi-LSTM [J]. Computer Science, 2022, 49(7): 31-39. |
[13] | ZHANG Ying-tao, ZHANG Jie, ZHANG Rui, ZHANG Wen-qiang. Photorealistic Style Transfer Guided by Global Information [J]. Computer Science, 2022, 49(7): 100-105. |
[14] | DAI Zhao-xia, LI Jin-xin, ZHANG Xiang-dong, XU Xu, MEI Lin, ZHANG Liang. Super-resolution Reconstruction of MRI Based on DNGAN [J]. Computer Science, 2022, 49(7): 113-119. |
[15] | CHENG Cheng, JIANG Ai-lian. Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction [J]. Computer Science, 2022, 49(7): 120-126. |
|