Distributed Parallel Semantic Coding Algorithm for RDF Data

Computer Science ›› 2016, Vol. 43 ›› Issue (9): 197-202.doi: 10.11896/j.issn.1002-137X.2016.09.039

Previous Articles     Next Articles

Distributed Parallel Semantic Coding Algorithm for RDF Data

ZHENG Cui-chun and WANG Jing-bin   

  • Online:2018-12-01 Published:2018-12-01

Abstract: The existing distributed parallel compression coding algorithms for RDF data do not consider combining with the ontology file,resulting in encoded RDF data without any semantic information,which is not conducive to the distribu-ted query or reasoning. To solve these problems,a method named SCOM (Semantic Code with Ontology on MapReduce) was proposed to complete the semantic parallel coding for RDF data.Firstly,the algorithm combines the ontology of RDF data to build the class and attribute relationship model.The triple items are encoded and a dictionary table is generated after classifying and filtering triples.Finally,the coding for RDF data with semantic information and regularities is completed.In addition,SCOM algorithm can easily revert the encoded RDF data file to their original file.Experimental results show that SCOM algorithm can achieve the parallel coding of large-scale data efficiently.

Key words: RDF,Ontology,Semantic coding,MapReduce

[1] Du Fang,Chen Yue-guo,Du Xiao-yong.RDF Query Processing Techniques[J].Journal of Software,2013,24(6):1222-1242(in Chinese)杜方,陈跃国,杜小勇.RDF数据查询处理技术综述[J].软件学报,2013,24(6):1222-1242
[2] Auer S,Bizer C,Kobilarov G,et al.Dbpedia:A nucleus for a web of open data[M].Springer Berlin Heidelberg,2007:722-735
[3] Apweiler R,Bairoch A,Wu C H,et al.UniProt:the universal protein knowledgebase[J].Nucleic Acids Research,2004,32(suppl 1):D115-D119
[4] Stadler C,Lehmann J,Hffner K,et al.Linkedgeodata:A core for a web of spatial open data[J].Semantic Web,2012,3(4):333-354
[5] Goodman E L,Jimenez E,Mizell D,et al.High-performancecomputing applied to semantic databases[M]∥The Semanic Web:Research and Applications.Springer Berlin Heidelberg,2011:31-45
[6] Long Cheng,Malik A,Kotoulas S,et al.Efficient parallel dictionary encoding for RDF data[C]∥Proceedings of the 17th International Workshop on the Web and Databases(WebDB).2014
[7] Long Cheng, Malik A, Kotoulas S, et al.Scalable RDF DataCompression using X10[J/OL].http://rian.ie/ga/item/viem/109810.html
[8] Urbani J,Maassen J,Drost N,et al.Scalable RDF data compression with MapReduce[J].Concurrency and Computation:Practice and Experience,2013,25(1):24-39
[9] Wu Bu-wen,Jin Hai,Yuan Ping-peng.Scalable SAPRQL que-rying processing on large RDF data in cloud computing environment[M]∥Pervasive Computing and the Networked World.Springer Berlin Heidelberg,2013:631-646
[10] Liu Liu,Yin Jiang-tao,Gao Li-xin.Efficient social network data query processing on mapreduce[C]∥Proceedings of the 5th ACM workshop on HotPlanet.ACM,2013:27-32
[11] Lee D,Kim J S,Maeng S.Large-scale incremental processing with MapReduce[J].Future Generation Computer Systems,2014,36:66-79
[12] Thomas H,Cormen Charles E,Leiserson Ronald L,et al.Introduction to Algorithms(第3版)[M].殷建平,徐云,等译.北京:机械工业出版社,2013:593-599
[13] Guo Yuan-bo,Pan Zheng-xiang, Heflin J.LUBM:A benchmark for OWL knowledge base systems[J].Web Semantics:Science,Services and Agents on the World Wide Web,2005,3(2):158-182

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!