QoS Quantification Method for Web Server with Mimic Construction

Computer Science ›› 2019, Vol. 46 ›› Issue (11): 109-118.doi: 10.11896/jsjkx.181001922

• Information Security • Previous Articles     Next Articles

QoS Quantification Method for Web Server with Mimic Construction

ZHANG Jie-xin, PANG Jian-min, ZHANG Zheng, TAI Ming, LIU Hao   

  1. (State key Laboratory of Mathematical Engineering and Advanced Computing,Zhengzhou 450001,China)
  • Received:2018-10-15 Online:2019-11-15 Published:2019-11-14

Abstract: As the emerging “Internet Plus” has quickly become an important driving force of social and economic deve-lopment,Web service plays an increasing role in society,but its security issues are worsening.The Web server with mimic construction is a new Web defense system based on the principle of mimic defense,and it uses the heterogeneity,dynamics,redundancy and other characteristics to block or disrupt network attacks.Although it has been deployed and some better defense effects have been gotten,there is still a lack of effective methods for quantifying its QoS.On the basis of analyzing the system architecture of the Web server with mimic construction,this paper discussed the difference and issues between the quantification of its QoS and the quantification of traditional Web servers’ QoS,and analyzed the factors affecting its QoS.Based on the “Wood Barrel” principle,this paper proposed a quantitative evaluation method for the service quality of the Web server with mimic construction,and used the vector similarity method to quantify the loss value of the QoS.This effort provides a new method for quantifying the QoS of the Web server with mimic construction in theory,and provides guidance for optimizing its service quality in engineering practice.The simulation and experimental results show the proposed quantification method can effectively quantify and evaluate the QoS of the Web server with mimic construction compared with the existing evaluation methods.

Key words: Mimic defense, QoS attributes, Quality of service, Quantification method, Web service

CLC Number: 

  • TP311
[1]中国互联网络信息中心.中国互联网络发展状况统计报告[R].北京:2018.
[2]邬江兴.网络空间拟态防御导论[M].北京:科学出版社,2017.
[3]WU J X,ZHANG F,LUO X G.Mimic computing and Mimic Security Defense[J].Communications of the CCF,2015,11(1):8-14.(in Chinese)
邬江兴,张帆,罗兴国.拟态计算与拟态安全防御[J].中国计算机学会通讯,2015,11(1):8-14.
[4]TONG Q,ZHANG Z,ZHANG W H,et al.Design and implementation of mimic defense Web server[J].Journal of Software,2017,28(4):883-897 .(in Chinese)
仝青,张铮,张为华,等.拟态防御Web服务器设计与实现[J].软件学报,2017,28(4):883-897.
[5]ZHANG Z,MA B L,WU J X.The Test and Analysis of Prototype of Mimic Defense in Web Servers[J].Journal of Cyber Security,2017,2(1):13-28.(in Chinese)
张铮,马博林,邬江兴.Web服务器拟态防御原理验证系统测试与分析[J].信息安全学报,2017,2(1):13-28.
[6]PETRIE C J.Web Service Composition[M].Cham:Springer International Publishing,2016.
[7]HWANG S Y,HSU C C,LEE C H.Service Selection for Web Services with Probabilistic QoS[J].IEEE Transactions on Ser-vices Computing,2017,8(3):467-480.
[8]JIANG W,HU S,LIU Z.Top K Query for QoS-Aware Automatic Service Composition[J].IEEE Transactions on Services Computing,2014,7(4):681-695.
[9]KUMAR S,MISHRA R B,SUGUMARAN V.A Hybrid Model for Service Selection in Semantic Web Service Composition[J].International Journal of Intelligent Information Technologies,2017,4(4):55-69.
[10]WEI L,YIN J,LI Y,et al.Efficient Web service QoS prediction using local neighborhood matrix factorization[J].Engineering Applications of Artificial Intelligence,2015,38(2):14-23.
[11]LIAN-YONG Q I,DOU W C.Web service composition method based on local QoS optimization in cross-organizational cooperation[J].Computer Integrated Manufacturing Systems,2011,17(8):1647-1653.
[12]HAMMAS O,YAHIA S B,AHMED S B.Adaptive Web service composition insuring global QoS optimization[C]∥International Symposium on Networks.Hammamet:IEEE,2015:1-6.
[13]KANG G S,LIU J X,TANG M D,et al.Global Optimal Web Service Selection Model for Multiple Service Requests[J].Journal of Computer Research and Development,2013,50(7):1524-1533.(in Chinese)
康国胜,刘建勋,唐明董,等.面向多请求的Web服务全局优化选择模型研究[J].计算机研究与发展,2013,50(7):1524-1533.
[14]RODRIGUEZMIER P,MUCIENTES M,LAMA M.HybridOptimization Algorithm for Large-Scale QoS-Aware Service Composition[J].IEEE Transactions on Services Computing,2017,10(4):547-559.
[15]LIU Z Z,CHU D H,JIA Z P,et al.Two-stage approach for reliable dynamic Web service composition[J].Knowledge-Based Systems,2016,97(4):123-143.
[16]ZENG L,BENATALLAH B,NGU A H H,et al.QoS-AwareMiddleware for Web Services Composition[J].IEEE Transactions on Software Engineering,2004,30(5):359-364.
[17]YU Q,REGE M,BOUGUETTAYA A,et al.A two-phaseframework for quality-aware Web service selection[J].Service Oriented Computing &Applications,2010,4(2):63-79.
[18]ZENG L,XU S,WANG Y,et al.Toward cost-effective replica placements in cloud storage systems with QoS-awareness[J].Software Practice & Experience,2017,47:813-829.
[19]CHEN J,ZHOU H,ZHANG N,et al.Service-Oriented Dynamic Connection Management for Software-Defined Internet of Vehicles[J].IEEE Transactions on Intelligent Transportation Systems,2017,18(10):2826-2837.
[20]SHAHROKH P,SAFI-ESFAHANI F.QoS-based Web servicecomposition applying an improved genetic algorithm (IGA) method[J].International Journal of Enterprise Information Systems,2016,12(3):60-77.
[21]DING Z J,LIU J J,SUN Y Q,et al.A Transaction and QoS-Aware Service Selection Approach Based on Genetic Algorithm[J].IEEE Transactions on Systems Man & Cybernetics Systems,2017,45(7):1035-1046.
[22]WEN T,LI Y Q,SHENG G J,et al.Improved PSO-based Web service selection under uncertain information[J].Journal of Jilin University,2014,44(1):129-136.(in Chinese)
温涛,李迎秋,盛国军,等.不确定信息下基于改进粒子群算法的Web服务选择[J].吉林大学学报,2014,44(1):129-136.
[23]SILVAA S D,MA H,ZHANG M.A graph-based ParticleSwarm Optimisation approach to QoS-aware Web service composition and selection[C]∥2014 IEEE Congress on Evolutiona-ry Computation(CEC).IEEE,2014:3127-3134.
[24]LI G,BOUKHATEM L,WU J.Adaptive Quality-of-ServiceBased Routing for Vehicular Ad Hoc Networks With Ant Colony Optimization[J].IEEE Transactions on Vehicular Technology,2017,66(4):3249-3264.
[25]WANG D,HUANG H,XIE C.A Novel Adaptive Web Service Selection Algorithm Based on Ant Colony Optimization for Dynamic Web Service Composition[C]∥International Conference on Algorithms and Architectures for Parallel Processing.New York:Springer,2014:391-399.
[26]CAO T F,FU Y Q,ZHONG M Y.Based Web Service Composition with Genetic Algorithm and Ant Colony Optimization[J].Computer Systems & Applications,2012,21(6):81-85.(in Chinese)
曹腾飞,符云清,钟明洋.融合遗传蚁群算法的Web 服务组合研究[J].计算机系统应用,2012,21(6):81-85.
[27]DAI Y,LOU Y,LU X.A Task Scheduling Algorithm Based on Genetic Algorithm and Ant Colony Optimization Algorithm with Multi-QoS Constraints in Cloud Computing[C]∥International Conference on Intelligent Human-Machine Systems and Cybernetics.IEEE,2015:428-431.
[28]MA H,WANG A,ZHANG M.A Hybrid Approach Using Genetic Programming and Greedy Search for QoS-Aware Web Service Composition[M].Transactions on Large-Scale Data- and Knowledge-Centered Systems XVIII.Springer Berlin Heidelberg,2015:180-205.
[29]WU X.Meaning and Vision of Mimic Computing and Mimic Security Defense[J].Telecommunications Science,2014,30(7):1-7.(in Chinese)
邬江兴.专题导读——拟态计算与拟态防御的原意和愿景[J].电信科学,2014,30(7):1-7.
[30]ALRIFAI M,DOLOGP,BALKE W T,et al.Distributed Management of Concurrent Web Service Transactions[J].IEEE Transactions on Services Computing,2009,2(4):289-302.
[31]WANG S G,SUN Q B,YANG F C.Reputation evaluation approach in Web service selection[J].Journal of Software,2012,23(6):1350-1367.(in Chinese)
王尚广,孙其博,杨放春.Web服务选择中信誉度评估方法[J].软件学报,2012,23(6):1350-1367.
[32]ZHANG C W,SU S,CHEN J L.Genetic Algorithm on Web Services Selection Supporting QoS[J].Chinese Journal of Computers,2006,29(7):1029-1037.(in Chinese)
张成文,苏森,陈俊亮.基于遗传算法的QoS感知的Web服务选择[J].计算机学报,2006,29(7):1029-1037.
[33]TUYA J,YOUNAS M.A Framework to Test Advanced Web Services Transactions[C]∥Fourth IEEE International Conferen-ce on Software Testing,Verification and Validation.IEEE Computer Society,2011:443-446.
[34]NEWMAN D.Benchmarking Terminology for Firewall Performance[S].RFC 2647,1999.
[35]SUN H B,CHEN M,CAI Y B,et al.Research on Benchmarking Methods of IPv4/IPv6 Transition Gateway[J].Computer Engineering,2006,32(24):93-95.(in Chinese)
孙红兵,陈沫,蔡一兵,等.IPv4/IPv6转换网关性能测试方法研究[J].计算机工程,2006,32(24):93-95.
[36]MENASCE D.Response-time analysis of composite Web services[J].Internet Computing IEEE,2004,8(1):90-92.
[37]PETER L J,Hull R.The peter principle[M].London:Souvenir Press,1969.
[38]JIAO L M,YANG J L.A New Method for Calculating Weights[J].Command Control & Simulation,2006,28(1):94-97.(in Chinese)
焦利明,杨建立.一种确定指标权重的新方法[J].指挥控制与仿真,2006,28(1):94-97.
[1] YANG Yu-li, LI Yu-hang, DENG An-hua. Trust Evaluation Model of Cloud Manufacturing Services for Personalized Needs [J]. Computer Science, 2022, 49(3): 354-359.
[2] YANG Lin, WANG Yong-jie, ZHANG Jun. FAWA:A Negative Feedback Dynamic Scheduling Algorithm for Heterogeneous Executor [J]. Computer Science, 2021, 48(8): 284-290.
[3] YAO Juan, XING Bin, ZENG Jun, WEN Jun-hao. Survey on Cloud Manufacturing Service Composition [J]. Computer Science, 2021, 48(7): 245-255.
[4] SUN Ming-wei, SI Wei-chao, DONG Qi. Research on Comprehensive Evaluation of Network Quality of Service Based on Multidimensional Data [J]. Computer Science, 2021, 48(6A): 246-249.
[5] ZHENG Zeng-qian, WANG Kun, ZHAO Tao, JIANG Wei, MENG Li-min. Load Balancing Mechanism for Bandwidth and Time-delay Constrained Streaming Media Server Cluster [J]. Computer Science, 2021, 48(6): 261-267.
[6] LU Yi-fan, CAO Rui-hao, WANG Jun-li, YAN Chun-gang. Method of Encapsulating Procuratorate Affair Services Based on Microservices [J]. Computer Science, 2021, 48(2): 33-40.
[7] YANG Zhang-lin, XIE Jun, ZHANG Geng-qiang. Review of Directional Routing Protocols for Flying Ad-Hoc Networks Based on Directional Antennas [J]. Computer Science, 2021, 48(11): 334-344.
[8] YU Yang, XING Bin, ZENG Jun, WEN Jun-hao. KSN:A Web Service Discovery Method Based on Knowledge Graph and Similarity Network [J]. Computer Science, 2021, 48(10): 160-166.
[9] TANG Wen-jun,ZHANG Jia-li,CHEN Rong,GUO Shi-kai. Web Service Crowdtesting Task Assignment Approach Based onReinforcement Learning [J]. Computer Science, 2020, 47(3): 54-60.
[10] FAN Guo-dong,ZHU Ming,LI Jing,CUI Xiao-liu. Web Service Composition by Combining FAHP and Graphplan [J]. Computer Science, 2020, 47(1): 270-275.
[11] LING Jing, JIANG Ling-yun. Semantic Description of IoT Services:A Method of Mapping WSDL to OWL-S [J]. Computer Science, 2019, 46(4): 89-94.
[12] LU Cheng-hua, KOU Ji-song. Multi-attribute Decision Making and Adaptive Genetic Algorithm for Solving QoS Optimization of Web Service Composition [J]. Computer Science, 2019, 46(2): 187-195.
[13] CHANG Xiao-lin, FAN Yong-wen, ZHU Wei-jun, LIU Yang. Management Information System Based on Mimic Defense [J]. Computer Science, 2019, 46(11A): 438-441.
[14] WANG Wei, YANG Ben-chao, LI Guang-song, SI Xue-ming. Security Analysis of Heterogeneous Redundant Systems [J]. Computer Science, 2018, 45(9): 183-186.
[15] ZHOU Nv-qi, ZHOU Yu. Multi-objective Verification of Web Service Composition Based on Probabilistic Model Checking [J]. Computer Science, 2018, 45(8): 288-294.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!