Computer Science ›› 2022, Vol. 49 ›› Issue (4): 215-220.doi: 10.11896/jsjkx.210200174
• Computer Graphics & Multimedia • Previous Articles Next Articles
YAN Min1, LUO Xiao-qing1, ZHANG Zhan-cheng2
CLC Number:
[1] MA J Y,MA Y.Infrared and visible image fusion methods and applications:A survey[J].Information Fusion,2019,45:153-178. [2] LIU Y,CHEN X,CHENG J,et al.Infrared and visible image fusion with convolutional neural networks[J].International Journal of Wavelets,Multiresolution and Information Processing,2018,16(3):1. [3] TOET A.Image fusion by a ratio of low-pass pyramid[J].Pattern Recognition Letters,1989,9(4):245-253. [4] LIU Y,JING J,WANG Q,et al.Region level based multi-focus image fusion using quaternion wavelet and normalized cut-Science Direct[J].Signal Processing,2014,97(7):9-30. [5] WANG J,PENG J,FENG X,et al.Fusion method for infrared and visible images by using non-negative sparse representation[J].Infrared Physics & Technology,2014,67:477-489. [6] LI H,WU X J.Infrared and visible image fusion using LatentLow-Rank Representation[J].arXiv:1804.08992. [7] GOODFELLOW I J,POUGET-ABADIE J,MIRZA M,et al.Generative Adversarial Networks[J].Advances in Neural Information Processing Systems,2014,3:2672-2680. [8] WANG H,LI S,SONG L,et al.A novel convolutional neural network based fault recognition method via image fusion of multi-vibration-signals[J].Computers in Industry,2019,105:182-190. [9] MA J Y,WEI Y,LIANG P W,et al.FusionGAN:A generative adversarial network for infrared and visible image fusion[J].Information Fusion,2019,48:11-26. [10] MA J Y,LIANG P W,et al.Infrared and visible image fusion via detail preserving adversarial learning[J].Information Fusion,2020,54:85-98. [11] MA J Y,HAN X.DDcGAN:A dual-discriminator conditionalgenerative adversa-rial network for multi-resolution image fusion[J].IEEE Transactions on Image Processing,2020,29:4980-4995. [12] ZHANG Y,LIU Y.IFCNN:a general image fusion framework based on convolutional neural network[J].Information Fusion,2020,54:99-118. [13] NARASIMHAN S G,NAYAR S K.Vision and the Atmosphere[J].International Journal of Computer Vision,2002,48(3):233-254. [14] HUANG S C,YE J H,CHEN B H.An Advanced Single ImageVisibility Restorat-ion Algorithm for Real World Hazy Scenes[J].IEEE Transactions on Industrial Electronics,2015,62(5):2962-2972. [15] HE K M,TANG X.Single image haze removal using dark channel prior[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(12):2341-2353. [16] SILBERMAN N,HOIEM D,KOHLI P,et al.Indoor Segmentation and Support Inference from RGBD Images[J] Lecture Notes in Computer Science,2012,7576(1):761-774. [17] MIRZA M,OSINDERO S.Conditional Generative AdversarialNets[J].Computer Science,2014,3:2672-2680. [18] PATHAK D,KRAHENBUHL P,DONA-HUE J,et al.Context Encoders:Feature Learning by Inpainting[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops.Washington:IEEE Computer Society,2016:2536-2544. [19] HE K M,ZHANG X Y.Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops.Washington:IEEE Computer Society,2016:770-778. [20] HE K M,ZHANG X.Delving Deep into Rectifiers:Surpassing Human-Level Perfo-rmance on ImageNet Classification[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision Workshops.Washington:IEEE Computer Society,2015:1026-1034. [21] LI H,WU X J.DenseFuse:A Fusion Approach to Infrared and Visible Images[J].IEEE Transactions on Image Processing,2018,28(5):2614-2623. [22] LI H,WU X J.Infrared and Visible Image Fusion using a Deep Learning Framework[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops.Washington:IEEE Computer Society,2018:2705-2710. |
[1] | ZHAO Ming-hua, ZHOU Tong-tong, DU Shuang-li, SHI Zheng-hao. Single Backlit Image Enhancement Based on Virtual Exposure Method [J]. Computer Science, 2022, 49(6A): 384-389. |
[2] | LAI Teng-fei, ZHOU Hai-yang, YU Fei-hong. Real-time Extend Depth of Field Algorithm for Video Processing [J]. Computer Science, 2022, 49(6A): 314-318. |
[3] | GAO Yuan-hao, LUO Xiao-qing, ZHANG Zhan-cheng. Infrared and Visible Image Fusion Based on Feature Separation [J]. Computer Science, 2022, 49(5): 58-63. |
[4] | DOU Zhi, WANG Ning, WANG Shi-jie, WANG Zhi-hui, LI Hao-jie. Sketch Colorization Method with Drawing Prior [J]. Computer Science, 2022, 49(4): 195-202. |
[5] | TANG Yu-xiao, WANG Bin-jun. Research Progress of Face Editing Based on Deep Generative Model [J]. Computer Science, 2022, 49(2): 51-61. |
[6] | GUAN Zheng, DENG Yang-lin, NIE Ren-can. Non-negative Matrix Factorization Based on Spectral Reconstruction Constraint for Hyperspectral and Panchromatic Image Fusion [J]. Computer Science, 2021, 48(9): 153-159. |
[7] | HUANG Xiao-sheng, XU Jing. Multi-focus Image Fusion Method Based on PCANet in NSST Domain [J]. Computer Science, 2021, 48(9): 181-186. |
[8] | TIAN Song-wang, LIN Su-zhen, YANG Bo. Multi-band Image Self-supervised Fusion Method Based on Multi-discriminator [J]. Computer Science, 2021, 48(8): 185-190. |
[9] | CUI Wen-hao, JIANG Mu-rong, YANG Lei, FU Peng-ming, ZHU Ling-xiao. Combining MCycleGAN and RFCNN to Realize High Resolution Reconstruction of Solar Speckle Image [J]. Computer Science, 2021, 48(6A): 38-42. |
[10] | ZHANG Man, LI Jie, ZHU Xin-zhong, SHEN Ji, CHENG Hao-tian. Augmentation Technology of Remote Sensing Dataset Based on Improved DCGAN Algorithm [J]. Computer Science, 2021, 48(6A): 80-84. |
[11] | LIU Han-qing, KANG Xiao-dong, LI Bo, ZHANG Hua-li, FENG Ji-chao, HAN Jun-ling. Comparative Study on Classification and Recognition of Medical Images Using Deep Learning Network [J]. Computer Science, 2021, 48(6A): 89-94. |
[12] | CHENG Xue-lin, YANG Xiao-hu, ZHUO Chong-kui. Research and Implementation of Data Authority Control Model Based on Organization [J]. Computer Science, 2021, 48(6A): 558-562. |
[13] | WANG Li-fang, WANG Rui-fang, LIN Su-zhen, QIN Pin-le, GAO Yuan, ZHANG Jin. Multimodal Medical Image Fusion Based on Dual Residual Hyper Densely Networks [J]. Computer Science, 2021, 48(2): 160-166. |
[14] | ZHOU Xiao-shi, ZHANG Zi-wei, WEN Juan. Natural Language Steganography Based on Neural Machine Translation [J]. Computer Science, 2021, 48(11A): 557-564. |
[15] | YANG Chun-de, JIA Zhu, LI Xin-wei. Study on ECG Signal Recognition and Classification Based on U-Net++ [J]. Computer Science, 2021, 48(10): 121-126. |
|