Computer Science ›› 2022, Vol. 49 ›› Issue (2): 198-203.doi: 10.11896/jsjkx.210100053
• Database & Big Data & Data Science • Previous Articles Next Articles
QIAO Jie1, CAI Rui-chu1, HAO Zhi-feng2
CLC Number:
[1]MCINERNEY J,BROST B,CHANDAR P,et al.Counterfactual Evaluation of Slate Recommendations with Sequential Reward Interactions[C]//The 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.New York:ACM,2020:1779-1788. [2]RUNGE J,BATHIANY S,BOLLT E,et al.Inferring causationfrom time series in Earth system sciences[J].Nature Communications,2019,10(1):1-13. [3]CAI R,ZHANG Z,HAO Z,et al.Understanding social causali-ties behind human action sequences[J].IEEE Transactions on Neural Networks and Learning Systems,2016,28(8):1801-1813. [4]WANG W J,DU X H,REN Z Y,et al.Reconstruction of Cloud Platform Attack Scenario Based on Causal Knowledge and Temporal-Spatial Correlation[J].Computer Science,48(2):317-323. [5]CAI R C,CHEN W,ZHANG K,et al.A Survey on Non-Temporal Series Observational Data based Causal Discovery[J].Chinese Journal of Computers,2017,40(6):1470-1490. [6]XIE F,CAI R,HUANG B,et al.Generalized Independent NoiseCondition for Estimating Latent Variable Causal Graphs[C]//Advances in Neural Information Processing Systems.New York:Curran Associates,Inc.,2020:14891-14902. [7]GLYMOUR C,ZHANG K,SPIRTES P.Review of causal discovery methods based on graphical models[J].Frontiers in Genetics,2019,10:524. [8]SHIMIZU S,HOYER P O,HYVÄRINEN A,et al.A linear non-Gaussian acyclic model for causal discovery[J].Journal of Machine Learning Research,2006,7(Oct):2003-2030. [9]SHIMIZU S,INAZUMI T,SOGAWA Y,et al.DirectLiNGAM:A direct method for learning a linear non-Gaussian structural equation model[J].Journal of Machine Learning Research,2011,12(Apr):1225-1248. [10]HOYER P,JANZING D,MOOIJ J M,et al.Nonlinear causal discovery with additive noise models[C]//Proceedings of the Twenty-Second Annual Conference on Neural Information Processing Systems.New York:NIPS,2008:689-696. [11]ZHANG K,HYVÄRINEN A.On the Identifiability of the Post-Nonlinear Causal Model[C]//UAI 2009,Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence.Corvallis,USA:AUAI Press,2009:647-655. [12]CAI R,QIAO J,ZHANG K,et al.Causal discovery from discrete data using hidden compact representation[C]//Advances in Neural Information Processing Systems.Calfornia,USA:NIPS,2018:2666-2674. [13]CAI R,QIAO J,ZHANG K,et al.Causal discovery with cascade nonlinear additive noise models[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence.Palo Alto,CA:AAAI Press,2019:1609-1615. [14]HUANG YL,LI P F,ZHU Q M.Joint Model of Events' Causal and Temporal Relations Identification[J].Computer Science,2018,45(6):204-207,234. [15]SPIRTES P,GLYMOUR C N,SCHEINES R.Causation,prediction,and search[M].USA:MIT press,2000. [16]TSAMARDINOS I,BROWN L E,ALIFERIS C F.The max-min hill-climbing Bayesian network structure learning algorithm[J].Machine Learning,2006,65(1):31-78. [17]ANDERSSON S A,MADIGAN D,PERLMAN M D,et al.A characterization of Markov equivalence classes for acyclic digraphs[J].The Annals of Statistics,Institute of Mathematical Statistics,1997,25(2):505-541. [18]SLONIM N,FRIEDMAN N,TISHBY N.Multivariate information bottleneck[J].Neural Computation,2006,18(8):1739-1789. [19]ALEMI A A,FISCHER I,DILLON J V,et al.Deep Variational Information Bottleneck[C]//the 5th International Conference on Learning Representations.2017. [20]KINGMA D P,WELLING M.Auto-Encoding Variational Bayes[C]//the 2nd International Conference on Learning Representations.2014. [21]HORNIK K,STINCHCOMBE M B,WHITE H.Multilayerfeedforward networks are universal approximators[J].Neural Networks,1989,2(5):359-366. [22]KINGMA D P,BA J.Adam:A Method for Stochastic Optimization[C]//the 3rd International Conference on Learning Representations.2014. [23]BÜHLMANN P,PETERS J,ERNEST J,et al.CAM:Causaladditive models,high-dimensional order search and penalized regression[J].The Annals of Statistics,Institute of Mathematical Statistics,2014,42(6):2526-2556. [24]GRETTON A,BOUSQUET O,SMOLA A J,et al.Measuring Statistical Dependence with Hilbert-Schmidt Norms[C]//Algorithmic Learning Theory,16th International Conference.Berlin,German:Springer,2005:63-77. [25]MOOIJ J M,PETERS J,JANZING D,et al.Distinguishingcause from effect using observational data:methods and benchmarks[J].The Journal of Machine Learning Research,2016,17(1):1103-1204. |
[1] | WANG Guan-yu, ZHONG Ting, FENG Yu, ZHOU Fan. Collaborative Filtering Recommendation Method Based on Vector Quantization Coding [J]. Computer Science, 2022, 49(9): 48-54. |
[2] | FU Kun, ZHAO Xiao-meng, FU Zi-tong, GAO Jin-hui, MA Hao-ran. Deep Network Representation Learning Method on Incomplete Information Networks [J]. Computer Science, 2021, 48(12): 212-218. |
[3] | CAO Wei-dong, XU Zhi-xiang, WANG Jing. Intrusion Detection Based on Semi-supervised Learning with Deep Generative Models [J]. Computer Science, 2019, 46(3): 197-201. |
[4] | ZENG Xu-yu, YANG Yan, WANG Shu-ying, HE Tai-jun, CHEN Jian-bo. Hybrid Recommendation Algorithm Based on Deep Learning [J]. Computer Science, 2019, 46(1): 126-130. |
[5] | JIANG Peng, YE Yang-dong and LOU Zheng-zheng. Multi-clusters IB Algorithm for Imbalanced Data Set [J]. Computer Science, 2016, 43(7): 245-250. |
|