Computer Science ›› 2021, Vol. 48 ›› Issue (11A): 63-70.doi: 10.11896/jsjkx.201100032
• Intelligent Computing • Previous Articles Next Articles
LIU Hua-ling, PI Chang-peng, LIU Meng-yao, TANG Xin
CLC Number:
[1]MITCHELL,TOM M.Machine learning[M].McGraw-Hill,1997. [2]SILVER D,HUANG A,MADDISON C.Mastering the game of go with deep neural networks and tree search[J].Nature,2016,529(7587):484-489. [3]HUANG Y,LIU D Y,HUANG K,et al.Overview on deeplearning[J].CAAI Transactions on Intelligent Systems,2019,1(14):1-19. [4]QIU Y P.Neural networks and deep learning[M].Beijing:China Machine Press,2020. [5]DAUPHIN Y,PASCANU R,GULCEHRE C,et al.Identifying and attacking the saddle point problem in high-dimensional non-convex optimization[J].Advances in Neural Information Processing Systems,2014,27. [6]LE Q V,NGIAM J,COATES A,et al.On optimization methods for deep learning[C]//International Conference on Machine Learning.2011. [7]RUDER S.An overview of gradient descent optimization algorithms[Z].2016. [8]YOUSOFF S N M,BAHARIN A,ABDULLAH A.A review on optimization algorithm for deep learning method in bioinformatics field[C]//2016 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES).2017. [9]FLETCHER R.Practical methods of optimization[J].Journal of the Operational Research Society,2013,33(7):675-676. [10]NOCEDAL J.Updating quasi-newton matrices with limitedstorage[J].Mathematics of Computation,1980,35(151):773-782. [11]GOYAL P,DOLLAR P,GIRSHICK R,et al.Accurate,largeminibatch sgd:Training imagenet in 1 hour[J].arXiv:1706.02677,2017. [12]LOSHCHILOV I,HUTTER F.Sgdr:Stochastic gradient de-scent with warm restarts[C]//International Joint Conference on Artificial Intelligence.2016. [13]DUCHI J,HAZAN E,SINGER Y.Adaptive subgradient methods for online learning and stochastic optimization[J].Journal of Machine Learning Research,2011,12(7). [14]TIELEMAN T,HINTON G.Lecture 6.5-rmsprop:Divide the gradient by a running average of its recent magnitude[C]//COURSERA:Neural Networks for Machine Learning.2012. [15]ZEILER D M.Adadelta:An adaptive learning rate method[C]//International Joint Conference on Artificial Intelligence.2012. [16]QIAN N.On the momentum term in gradient descent learning algorithms[J].Neural Netw,1999,12(1):145-151. [17]NESTEROV Y.Gradient methods for minimizing compositefunctions[J].Mathematical Programming,2013,140(1):125-161. [18]SUTSKEVER I,MARTENS J,DAHL G,et al.On the importance of initialization and momentum in deep learning[C]//International Conference on Machine Learning.2013. [19]PASCANU R,MIKOLOV T,BENGIO Y.On the difficulty oftraining recurrent neural networks[C]//Proceedings of the International Conference on Machine Learning.2013. [20]KINGMA D,BA J.Adam:A method for stochastic optimization[J].arXiv:1412.6980,2014. [21]REDDI S J,KALE S,KUMAR S.On the convergence of adam and beyond[C]//Proceedings of the International Conference on Learning Representations.2019. [22]LUO L,XIONG Y,LIU Y,et al.Adaptive gradient methodswith dynamic bound of learning rate[C]//Proceedings of the International Conference on Learning Representations.2019. [23]ZHANG M R,LUCAS J,HINTON G,et al.Lookahead optimizer:k steps forward,1 step back[C]//Proceedings of the Neural Information Processing Systems.2019. [24]LIU L,JIANG H,HE P,et al.On the variance of the adaptive learning rate and beyond[C]//Proceedings of the International Conference on Learning Representations.2019. [25]RUMELHART D E,HINTON G E,WILLIAMS R J.Learning representations by back-propagating errors[J].Nature,1986,323(6088):533-536. [26]HINTON G E,SRIVASTAVA N,KRIZHEVSKY A,et al.Improving neural networks by preventing co-adaptation of feature detectors[J].Computerence,2012,3(4):212-223. [27]RENDLE S.Factorization machines[C]//IEEE InternationalConference on Data Mining.2011. [28]SHAN Y,HOENS T R,JIAO J,et al.Deep crossing:Web-scale modeling without manually crafted combinatorial features[C]//22nd ACMSIGKDD International Conference.2016. [29]XIAO J,YE H,HE X,et al.Attentional factorization machines:Learning the weight of feature interactions via attention networks[C]//26th International Joint Conference on Artificial Intelligence.2017. |
[1] | RAO Zhi-shuang, JIA Zhen, ZHANG Fan, LI Tian-rui. Key-Value Relational Memory Networks for Question Answering over Knowledge Graph [J]. Computer Science, 2022, 49(9): 202-207. |
[2] | TANG Ling-tao, WANG Di, ZHANG Lu-fei, LIU Sheng-yun. Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy [J]. Computer Science, 2022, 49(9): 297-305. |
[3] | XU Yong-xin, ZHAO Jun-feng, WANG Ya-sha, XIE Bing, YANG Kai. Temporal Knowledge Graph Representation Learning [J]. Computer Science, 2022, 49(9): 162-171. |
[4] | WANG Jian, PENG Yu-qi, ZHAO Yu-fei, YANG Jian. Survey of Social Network Public Opinion Information Extraction Based on Deep Learning [J]. Computer Science, 2022, 49(8): 279-293. |
[5] | HAO Zhi-rong, CHEN Long, HUANG Jia-cheng. Class Discriminative Universal Adversarial Attack for Text Classification [J]. Computer Science, 2022, 49(8): 323-329. |
[6] | JIANG Meng-han, LI Shao-mei, ZHENG Hong-hao, ZHANG Jian-peng. Rumor Detection Model Based on Improved Position Embedding [J]. Computer Science, 2022, 49(8): 330-335. |
[7] | SUN Qi, JI Gen-lin, ZHANG Jie. Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection [J]. Computer Science, 2022, 49(8): 172-177. |
[8] | CHEN Jun, HE Qing, LI Shou-yu. Archimedes Optimization Algorithm Based on Adaptive Feedback Adjustment Factor [J]. Computer Science, 2022, 49(8): 237-246. |
[9] | HU Yan-yu, ZHAO Long, DONG Xiang-jun. Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification [J]. Computer Science, 2022, 49(7): 73-78. |
[10] | CHENG Cheng, JIANG Ai-lian. Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction [J]. Computer Science, 2022, 49(7): 120-126. |
[11] | HOU Yu-tao, ABULIZI Abudukelimu, ABUDUKELIMU Halidanmu. Advances in Chinese Pre-training Models [J]. Computer Science, 2022, 49(7): 148-163. |
[12] | ZHOU Hui, SHI Hao-chen, TU Yao-feng, HUANG Sheng-jun. Robust Deep Neural Network Learning Based on Active Sampling [J]. Computer Science, 2022, 49(7): 164-169. |
[13] | SU Dan-ning, CAO Gui-tao, WANG Yan-nan, WANG Hong, REN He. Survey of Deep Learning for Radar Emitter Identification Based on Small Sample [J]. Computer Science, 2022, 49(7): 226-235. |
[14] | ZHU Wen-tao, LAN Xian-chao, LUO Huan-lin, YUE Bing, WANG Yang. Remote Sensing Aircraft Target Detection Based on Improved Faster R-CNN [J]. Computer Science, 2022, 49(6A): 378-383. |
[15] | WANG Jian-ming, CHEN Xiang-yu, YANG Zi-zhong, SHI Chen-yang, ZHANG Yu-hang, QIAN Zheng-kun. Influence of Different Data Augmentation Methods on Model Recognition Accuracy [J]. Computer Science, 2022, 49(6A): 418-423. |
|