Computer Science ›› 2021, Vol. 48 ›› Issue (8): 185-190.doi: 10.11896/jsjkx.200600132
• Computer Graphics & Multimedia • Previous Articles Next Articles
TIAN Song-wang, LIN Su-zhen, YANG Bo
CLC Number:
[1]MA J Y,MA Y,LI C.Infrared and visible image fusion methods and applications:A survey[J].Information Fusion,2019,45:153-178. [2]MANVIYA M,BHARTI J.Image Fusion Survey:A Compre-hensive and Detailed Analysis of Image Fusion Techniques[M]//Social Networking and Computational Intelligence.Singapore:Springer,2020:649-659. [3]LIN S Z,YANG X L,ZHAO J C.Multi-band image fusion based on intuitionistic fuzzy set sorting[C]//Proceedings of the 9th Chinese Information Fusion Conference.2019:808-813. [4]SAIKIA P,BARUAH R D,SINGH S K,et al.Artificial Neural Networks in the domain of reservoir characterization:A review from shallow to deep models[J].Computers & Geosciences,2020,135(2):104357. [5]MILLER D J,XIANG Z,KESIDIS G.Adversarial learning targeting deep neural network classification:a comprehensive review of defenses against attacks[J].Proceedings of the IEEE,2020,108(3):402-433. [6]YANG X L,LIN S Z.A multi-band image feature level fusion method with attention mechanism[J].Journal of Xidian University,2020,47(1):120-127. [7]LIN S Z,HAN Z,LI D W,et al.Integrating model-and data-driven methods for synchronous adaptive multi-band image fusion[J].Information Fusion,2020,54:145-160. [8]JING L,TIAN Y.Self-supervised visual feature learning withdeep neural networks:A survey[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020(99):1-1. [9]ZHAI X,OLIVER A,KOLESNIKOV A,et al.S4l:Self-super-vised semi-supervised learning[C]//Proceedings of the IEEE International Conference on Computer Vision.2019:1476-1485. [10]DAI Q,PATIL V,HECKER S,et al.Self-supervised ObjectMotion and Depth Estimation from Video[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.2020:1004-1005. [11]SHUKLA A,VOUGIOUKAS K,MA P,et al.Visually Guided Self Supervised Learning of Speech Representations[J].arXiv:2001.04316,2020. [12]WANG Y D,ZHANG J,KAN M N,et al.Self-supervised Equi-variant Attention Mechanism for Weakly Supervised Semantic Segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:12275-12284. [13]GOODFELLOW I J,ABADIE J P,MIRZA M,et al.Generative adversarial nets[C]//Advances in Neural Information Proces-sing Systems.2014:2672-2680. [14]MA J Y,YU W,LIANG P W,et al.FusionGAN:A generative adversarial network for infrared and visible image fusion[J].Information Fusion,2019,48:11-26. [15]HUANG G,LIU Z,VAN D M L,et al.Densely connected con-volutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:4700-4708. [16]LI H,WU X J.Densefuse:A fusion approach to infrared and vi-sible images[J].IEEE Transactions on Image Processing,2018,28(5):2614-2623. [17]LYU Q,SHAN H,STEBER C,et al.Multi-contrast super-resolution mri through a progressive network[J].IEEE Transactions on Medical Imaging,2020,39(9):2738-2749. [18]GULRAJANI I,AHMED F,ARJOVSKY M,et al.Improvedtraining of wasserstein gans[C]//Advances in Neural Information Processing Systems.2017:5767-5777. [19]HAN Z.Research on multi-band image adaptive fusion method based on deep learning [D].Taiyuan:North University of China,2018. [20]MOONON A U,HU J.Multi-focus image fusion based on NSCT and NSST[J].Sensing and Imaging,2015,16(1):4. |
[1] | ZHANG Jia, DONG Shou-bin. Cross-domain Recommendation Based on Review Aspect-level User Preference Transfer [J]. Computer Science, 2022, 49(9): 41-47. |
[2] | XU Yong-xin, ZHAO Jun-feng, WANG Ya-sha, XIE Bing, YANG Kai. Temporal Knowledge Graph Representation Learning [J]. Computer Science, 2022, 49(9): 162-171. |
[3] | RAO Zhi-shuang, JIA Zhen, ZHANG Fan, LI Tian-rui. Key-Value Relational Memory Networks for Question Answering over Knowledge Graph [J]. Computer Science, 2022, 49(9): 202-207. |
[4] | TANG Ling-tao, WANG Di, ZHANG Lu-fei, LIU Sheng-yun. Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy [J]. Computer Science, 2022, 49(9): 297-305. |
[5] | SUN Qi, JI Gen-lin, ZHANG Jie. Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection [J]. Computer Science, 2022, 49(8): 172-177. |
[6] | WANG Jian, PENG Yu-qi, ZHAO Yu-fei, YANG Jian. Survey of Social Network Public Opinion Information Extraction Based on Deep Learning [J]. Computer Science, 2022, 49(8): 279-293. |
[7] | HAO Zhi-rong, CHEN Long, HUANG Jia-cheng. Class Discriminative Universal Adversarial Attack for Text Classification [J]. Computer Science, 2022, 49(8): 323-329. |
[8] | JIANG Meng-han, LI Shao-mei, ZHENG Hong-hao, ZHANG Jian-peng. Rumor Detection Model Based on Improved Position Embedding [J]. Computer Science, 2022, 49(8): 330-335. |
[9] | HU Yan-yu, ZHAO Long, DONG Xiang-jun. Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification [J]. Computer Science, 2022, 49(7): 73-78. |
[10] | DAI Zhao-xia, LI Jin-xin, ZHANG Xiang-dong, XU Xu, MEI Lin, ZHANG Liang. Super-resolution Reconstruction of MRI Based on DNGAN [J]. Computer Science, 2022, 49(7): 113-119. |
[11] | CHENG Cheng, JIANG Ai-lian. Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction [J]. Computer Science, 2022, 49(7): 120-126. |
[12] | HOU Yu-tao, ABULIZI Abudukelimu, ABUDUKELIMU Halidanmu. Advances in Chinese Pre-training Models [J]. Computer Science, 2022, 49(7): 148-163. |
[13] | ZHOU Hui, SHI Hao-chen, TU Yao-feng, HUANG Sheng-jun. Robust Deep Neural Network Learning Based on Active Sampling [J]. Computer Science, 2022, 49(7): 164-169. |
[14] | DU Hang-yuan, LI Duo, WANG Wen-jian. Method for Abnormal Users Detection Oriented to E-commerce Network [J]. Computer Science, 2022, 49(7): 170-178. |
[15] | SU Dan-ning, CAO Gui-tao, WANG Yan-nan, WANG Hong, REN He. Survey of Deep Learning for Radar Emitter Identification Based on Small Sample [J]. Computer Science, 2022, 49(7): 226-235. |
|