Computer Science ›› 2019, Vol. 46 ›› Issue (10): 7-13.doi: 10.11896/jsjkx.181102216
• Big Data & Data Science • Previous Articles Next Articles
YANG De-jie1, ZHANG Ning1, YUAN Ji2, BAI Lu1
CLC Number:
[1]LESSMANN S,BAESENS B,SEOW H V,et al.Benchmarking State-of-theart Classification Algorithms for Credit Scoring:An Update of Research[J].European Journal of Operational Research,2015,247(1):124-136. [2]VISHWAKARMA A C,SOLANKI R.Analysing Credit Risk using Statistical and Machine Learning Techniques[J].International Journal of Engineering Science and Computing,2018,8(6):18397-18404. [3]JAYANTHI J,JOSEPH KS,VAISHNAVI J.Bankruptcy Prediction using SVM and Hybrid SVM Survey [J].International Journal of Computer Application,2011,33(7):39-45. [4]FANG K N,ZHANG G J,ZHANG H Y.Individual Credit Risk Prediction Method:Application of a Lasso-logistic Model [J].The Journal of Quantitative & Technical Economics,2014,31(2):125-136.(in Chinese) 方匡南,章贵军,张慧颖.基于Lasso-logistic模型的个人信用风险预警方法[J].数量经济技术经济研究,2014,31(2):125-136. [5]LIN W Y,HU Y H,TSAI C F.Machine Learning in Financial Crisis Prediction:A Survey[J].IEEE Transactions on Systems Man & Cybernetics Part C,2012,42(4):421-436. [6]CHEN M Y,CHEN C C,LIU J Y.Credit Rating Analysis with Support Vector Machines and Artificial Bee Colony Algorithm[C]//Recent Trends in Applied Artificial Intelligence.Amsterdam:Springer,2013:528-534. [7]HEATON J B,POLSON N G,WITTE J H.Deep Learning in Finance[J].Applied Stochastic Models in Business and Industry,2017,33(1):561-580. [8]YU L,YANG Z B,TANG L.A Novel Multistage Deep Belief Network Based Extreme Learning Machine Ensemble Learning Paradigm for Credit Risk Assessment[J].Flexible Services & Manufacturing Journal,2016,28(4):576-592. [9]SIRIGNANO J,SADHWANI A,GIESECKE K.Deep Learning for Mortgage Risk[J].Social Science Electronic Publishing,2017,22(6):134-216. [10]SHIGEYUKI H,MINAMI K,TAKAHIRO K,et al.Ensemble Learning or Deep Learning? Application to Default Risk Analysis[J].Risk and Financial Management,2018,11(1):12-25. [11]MA S L,WUNIRI Q G,LI X P.Deep Learning With Big Data:State of The Art and Development [J].CAAI Transactions on Intelligent Systems,2016,11(6):728-742.(in Chinese) 马世龙,乌尼日其其格,李小平.大数据与深度学习综述[J].智能系统学报,2016,11(6):728-742. [12]LIU X H,DING W.Big Data Credit Reporting Practices of ZestFinance in The United States[J].Credit Reference,2015,22(8):27-32.(in Chinese) 刘新海,丁伟.美国ZestFinance公司大数据征信实践 [J].征信,2015,22(8):27-32. [13]LECUN Y,BENGIO Y,HINTON G.Deep Learning [J].Nature,2015,521(7553):436-444. [14]CUI L X,BAI L,HANCOCK E R,et al.Identifying the most informative features using a structurally interacting elastic net[J].Neurocomputing,2018,313(11):65-77. [15]ADDO P M,GUEGAN D,HASSANI B.Credit Risk Analysis Machine and Deep Learning Models[J].Risks,2018,6(2):38-57. [16]HINTON G E,SALAKHUTDINOV R R.Reducing the dimensionality of data with neural networks[J].Science,2006,313(5786):504-507. [17]VINCENT P,LAROCHELLE H,LAJOIE I,et al.Stacked Denosing Autoencoders:Learning Useful Representations in a Deep Network with aLocal Denoising Criterion [J].Journal Machine Learning Research,2010,27(11):3371-3408. [18]SAGHA H,CUMMINS N,SCHULLER B.Stacked Denoising Autoencoders for Sentiment Analysis:A review[J].Data Mining and Knowledge Discovery,2017,7(5):132-146. [19]ALHASSAN Z,MCGOUGH A,ALSHAMMARI R,et al. Stacked Denoising Autoencoders for Mortality Risk Prediction Using Imbalanced Clinical Data[C]//IEEE International Conference on Machine Learning and Applications.Orlando:IEEE Press,2018:396-401. [20]VANMARCKE E H.Random Fields:Analysis and Synthesis [M].Cambridge:MIT Press,1983:92-101. [21]YUAN J.Time-dependent Probabilistic Assessment of Rainfall-induced Slope Failure[D].Munich:Technical University of Munich,2016. [22]BETZ W,PAPAIOANNOU I,STRAUB D.Numerical Methods for the Discretization of Random Fields by Means of the Karhunen-Loève Expansion[J].Computer Methods in Applied Mechanics and Engineering,2014,271(0):109-129. |
[1] | XU Yong-xin, ZHAO Jun-feng, WANG Ya-sha, XIE Bing, YANG Kai. Temporal Knowledge Graph Representation Learning [J]. Computer Science, 2022, 49(9): 162-171. |
[2] | RAO Zhi-shuang, JIA Zhen, ZHANG Fan, LI Tian-rui. Key-Value Relational Memory Networks for Question Answering over Knowledge Graph [J]. Computer Science, 2022, 49(9): 202-207. |
[3] | TANG Ling-tao, WANG Di, ZHANG Lu-fei, LIU Sheng-yun. Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy [J]. Computer Science, 2022, 49(9): 297-305. |
[4] | LI Bin, WAN Yuan. Unsupervised Multi-view Feature Selection Based on Similarity Matrix Learning and Matrix Alignment [J]. Computer Science, 2022, 49(8): 86-96. |
[5] | CHEN Jing, WU Ling-ling. Mixed Attribute Feature Detection Method of Internet of Vehicles Big Datain Multi-source Heterogeneous Environment [J]. Computer Science, 2022, 49(8): 108-112. |
[6] | SUN Qi, JI Gen-lin, ZHANG Jie. Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection [J]. Computer Science, 2022, 49(8): 172-177. |
[7] | WANG Jian, PENG Yu-qi, ZHAO Yu-fei, YANG Jian. Survey of Social Network Public Opinion Information Extraction Based on Deep Learning [J]. Computer Science, 2022, 49(8): 279-293. |
[8] | HAO Zhi-rong, CHEN Long, HUANG Jia-cheng. Class Discriminative Universal Adversarial Attack for Text Classification [J]. Computer Science, 2022, 49(8): 323-329. |
[9] | JIANG Meng-han, LI Shao-mei, ZHENG Hong-hao, ZHANG Jian-peng. Rumor Detection Model Based on Improved Position Embedding [J]. Computer Science, 2022, 49(8): 330-335. |
[10] | HE Qiang, YIN Zhen-yu, HUANG Min, WANG Xing-wei, WANG Yuan-tian, CUI Shuo, ZHAO Yong. Survey of Influence Analysis of Evolutionary Network Based on Big Data [J]. Computer Science, 2022, 49(8): 1-11. |
[11] | HOU Yu-tao, ABULIZI Abudukelimu, ABUDUKELIMU Halidanmu. Advances in Chinese Pre-training Models [J]. Computer Science, 2022, 49(7): 148-163. |
[12] | ZHOU Hui, SHI Hao-chen, TU Yao-feng, HUANG Sheng-jun. Robust Deep Neural Network Learning Based on Active Sampling [J]. Computer Science, 2022, 49(7): 164-169. |
[13] | SU Dan-ning, CAO Gui-tao, WANG Yan-nan, WANG Hong, REN He. Survey of Deep Learning for Radar Emitter Identification Based on Small Sample [J]. Computer Science, 2022, 49(7): 226-235. |
[14] | HU Yan-yu, ZHAO Long, DONG Xiang-jun. Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification [J]. Computer Science, 2022, 49(7): 73-78. |
[15] | CHENG Cheng, JIANG Ai-lian. Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction [J]. Computer Science, 2022, 49(7): 120-126. |
|