一种面向云多层应用的费用高效的资源管理方法

计算机科学 ›› 2017, Vol. 44 ›› Issue (3): 73-78.doi: 10.11896/j.issn.1002-137X.2017.03.018

• 2015全国高性能计算学术年会 • 上一篇    下一篇

一种面向云多层应用的费用高效的资源管理方法

杨劲,庞建民,齐宁,刘睿   

  1. 解放军信息工程大学 郑州450001;数学工程与先进计算国家重点实验室 郑州450001,解放军信息工程大学 郑州450001;数学工程与先进计算国家重点实验室 郑州450001,解放军信息工程大学 郑州450001;数学工程与先进计算国家重点实验室 郑州450001,解放军61345部队 西安710100
  • 出版日期:2018-11-13 发布日期:2018-11-13
  • 基金资助:
    本文受上海市科委科技攻关项目(13DZ1108800),国家自然科学基金(61472447)资助

Cost-efficient Resource Management for Cloud Multi-tier Applications

YANG Jin, PANG Jian-min, QI Ning and LIU Rui   

  • Online:2018-11-13 Published:2018-11-13

摘要: 由于部署方便、维护简单并且不需要搭建自己的私有机房,云数据中心正成为大多数互联网公司 尤其是初创公司和中小规模公司 部署应用程序的首选。在以基础设施为服务的云环境里,互联网公司可以根据应用程序的需要动态租赁云基础设施,从而节省预算开支,并保证应用性能。然而,在现有的业界实践中,云服务提供商提供的负载均衡和资源伸缩服务只能监控虚拟机的使用状态,并不能监控应用程序的运行状态,因此无法准确根据应用程序的服务需求自适应变换资源规模。同时,现有的文献和实践中,也很少有 研究从云基础设施使用者的角度出发,为使用者节省基础设施租赁费用或高效使用已租赁基础设施。据此提出了一种面向基础设施云环境下多层应用的费用高效的资源管理方法,其在降低用户费用的同时,还能充分利用所花费用提高应用程序性能。通过仿真对所提方法业界实际使用的方法 进行比较,结果表明所提方法不仅能够提高应用程序的服务质量和服务性能,也能较大地降低公司在基础设施租赁方面的费用。

关键词: 云计算,费用高效,多层架构,资源伸缩,负载均衡

Abstract: Cloud data centers are increasingly becoming the first choice for many Internet enterprises,especially the newly formed and small ones,because it is convenient to deploy the applications,easy to maintain them,and unnecessary to build a private in-house infrastructure.In the cloud environments based on infrastructure as a service,Internet companies can rent the cloud infrastructure dynamically in accordance with the service requirements.In this way,they have the chance to save the costs of renting infrastructure with the performance guarantees.However,the existing methods for balancing workloads and scaling resources in the industry practice are only able to monitor the states of virtual machines,not the custom performance metrics such as the number of live application sessions.So these scaling methods cannot decide the exact resource demands according to the service requirements.In addition,there are few academic studies on reducing the renting costs and employing the billing resources efficiently in the cloud environment.On the basis of these points,this paper proposed a cost-efficient resource management approach for the cloud multi-tier applications,aiming to save infrastructure costs and improve the application performance with the billing resources.Last,we compared the proposed method with the algorithms used in practice by simulating them with the ripe benchmarks.The results indicate that our method can not only improve the quality and performance of the application,but also reduce the cost of renting infrastructure largely.

Key words: Cloud computing,Cost-efficient,Multi-tier architecture,Resource scaling,Workload balance

[1] AMAZON.Amazon elastic compute cloud (Amazon EC2) [EB/OL].[2015-3-1].http://aws.amazon.com/cn/ec2/purchasing-options/.
[2] AMAZON.Amazon CloudWatch [EB/OL].[2015-3-1].http://aws.amazon.com/cn/cloudwatch/.
[3] AMAZON.Elastic Load Balancing[EB/OL].[2015-3-1].http://aws.amazon.com/cn/elasticloadbalancing/.
[4] AMAZON.Amazon Auto Scaling [EB/OL].[2015-3-1].http://aws.amazon.com/cn/autoscaling/.
[5] MASTELIC T,OLEKSIAK A,CLAUSSEN H,et al.Cloud Com-puting:Survey on Energy Efficiency [J].ACM Comput.Surv.,2014,47(2):1-36.
[6] DING Y W,QIN X L,LIU L,et al.An Energy Efficient Algorithm for Big Data Processing in Heterogeneous Cluster [J].Journal of Computer Research and Development,2015,52(2):377-390.(in Chinese) 丁有伟,秦小麟,刘亮,等.一种异构集群中能量高效的大数据处理算法[J].计算机研究与发展,2015,52(2):377-390.
[7] KONG F,LIU X.A Survey on Green-Energy-Aware PowerManagement for Datacenters [J].ACM Comput.Surv.,2014,47(2):1-38.
[8] GROZEV N,BUYYA R.Multi-Cloud Provisioning and Load Dis-tribution for Three-Tier Applications [J].ACM Trans.Auton.Adapt.Syst.,2014,9(3):1-21.
[9] FOWLER M.Patterns of enterprise application architecture[M].Addison-Wesley Longman Publishing Co.,Inc.,2002.
[10] GROZEV N,BUYYA R.Performance modelling and simulation of three-tier applications in cloud and multi-cloud environments [J].The Computer Journal,2015,58(1):1-22.
[11] PULLARA S,HALPERN E,PEDDADA P,et al.Method andapparatus for session replication and failover:CN1549978 A[P].2003.
[12] REVANURU N,TORSTENSSON P,AGARWAL P,et al.System and method for supporting one-way remote method invocation for session replication in a server cluster:US8856352[P].2014.
[13] CALHEIROS R N,RANJAN R,BELOGLAZOV A,et al.CloudSim:a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms [J].Software:Practice and Experience,2011,41(1):23-50.
[14] RUBiS.RUBiS:Rice University Bidding System[EB/OL].[2015-3-1].http://rubis.ow2.org.
[15] MAO M,HUMPHREY M.A performance study on the vmstartup time in the cloud [C]∥2012 IEEE 5th International Conference on Cloud Computing (CLOUD).2012:423-430.
[16] CAO J,Andersson M,Nyberg C,et al.Web server performance modeling using an M/G/1/K* PS queue[C]∥10th International Conference on Telecommunications,2003(ICT 2003).2003:1501-1506.
[17] MENASCE,DANIEL.TPC-W:A benchmark for e-commerce[J].Internet Computing,IEEE,2002,6(3):83-87.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!