计算机科学 ›› 2021, Vol. 48 ›› Issue (11A): 111-116.doi: 10.11896/jsjkx.210300030
黄寿孟
HUANG Shou-meng
摘要: 传统的异构网链路预测研究有基于元路径监督学习的PathPredict算法与MPBP算法,但它们并不能充分利用异构网提供的丰富信息来进行链路预测。在原有传统监督学习算法的基础上,首先为了增加链路熵和时间动态信息而设计了HLE-T算法,然后通过链路强弱关系的数值分段构建多分类问题的监督学习算法MSLP链路预测模型,最后在4个稠密度不同的数据集下完成了实验测试。实验结果表明,MSLP链路预测模型一定程度上提升了异构网中的链路预测性能,对未来链路预测研究具有一定的借鉴意义。
中图分类号:
[1]SUN Y,HAN J.Mining Heterogeneous Information Networks:A Structural Analysis Approach[J].ACM SIGKDD Explorations Newsletter,2013,14(2):20-28. [2]HU W,LI J,CHENG J,et al.Security Monitoring of Heterogeneous Networks for Big Data Based on Distributed Association Algorithm[J].Computer Communications,2020,152:206-214. [3]KOVÁCS I A,LUCK K,SPIROHN K,et al.Network-basedPrediction of Protein Interactions[J].Nature Communications,2019,10(1):1-8. [4]DAUD A,AHMAD M,MALIK M S I,et al.Using Machine Learning Techniques for Rising Star Prediction in Co-author Network[J].Scientometrics,2015,102(2):1687-1711. [5]SHI C,LI Y,ZHANG J,et al.A Survey of Heterogeneous Information Network Analysis[J].IEEE Transactions on Knowledge and Data Engineering,2016,29(1):17-37. [6]SUN Y,HAN J,YAN X,et al.Pathsim:Meta path-based Top-k Similarity Search in Heterogeneous Information Networks[J].Proceedings of the VLDB Endowment,2011,4(11):992-1003. [7]JIANG L,YANG C C.User Recommendation in Healthcare Social Media by Assessing User imilarity in Heterogeneous Network[J].Artificial Intelligence in Medicine,2017,81(9):63-77. [8]ZHANG F,WANG M,XI J,et al.A Novel Heterogeneous Network-based Method for Drug Response Prediction in Cancer Cell Lines[J].Scientific Reports,2018,8(1):355-367. [9]LIANG W,LI X,HE X,et al.Supervised Ranking Framework for Relationship Prediction in Heterogeneous Information Networks[J].Applied Intelligence,2018,48(5):1111-1127. [10]LI J,ZHAO D,GE B F,et al.A Link Prediction Method forHeterogeneous Networks Based on BP Neural Network[J].Physica A-Statistical Mechanics and Its Applications,2018,495(1):1-16. [11]PENG Y C.Research on Link Prediction in Heterogeneous Information Networks[D].Harbin:Harbin Institute of Technology,2020. [12]LAI J,SHENG H L.Research on Link Prediction Performance of Complex Networks Based on Clustering Analysis[J].Computing Technology and Automation,2019(4):144-150. [13]WANG H ,LE Z C,GONG X,et al.Link Prediction of Complex Networks is Analyzed from the Perspective of Informatics[J].Journal of Chinese Computer Systems,2020,41(2):316-326. [14]BAI H,MA Y L,BI Y,et al.A Complicated Network Link Prediction Algorithm Based on Local Similarity of Nodes[J].Computer Applications and Software,2020,37(5):298-301. [15]LIU S X,LI X,CHEN H C,et al.Link prediction method based on matching degree of resource transmission for complex network[J].Journal on Communications,2020,41(6):70-79. [16]QI F P,WANG T,FU Z Q.Link prediction in complex networks based on mutual information[J].Journal of University of Science and Technology of China,2020,50(1):57-63. [17]REVELLE M,DOMENICONI C,SWEENEY M,et al.Finding Community Topics and Membership in Graphs[C]//Joint European Conference on Machine Learning and Knowledge Discovery in Databases.2015:625-640. |
[1] | 宋杰, 梁美玉, 薛哲, 杜军平, 寇菲菲. 基于无监督集群级的科技论文异质图节点表示学习方法 Scientific Paper Heterogeneous Graph Node Representation Learning Method Based onUnsupervised Clustering Level 计算机科学, 2022, 49(9): 64-69. https://doi.org/10.11896/jsjkx.220500196 |
[2] | 武红鑫, 韩萌, 陈志强, 张喜龙, 李慕航. 监督和半监督学习下的多标签分类综述 Survey of Multi-label Classification Based on Supervised and Semi-supervised Learning 计算机科学, 2022, 49(8): 12-25. https://doi.org/10.11896/jsjkx.210700111 |
[3] | 杜航原, 李铎, 王文剑. 一种面向电商网络的异常用户检测方法 Method for Abnormal Users Detection Oriented to E-commerce Network 计算机科学, 2022, 49(7): 170-178. https://doi.org/10.11896/jsjkx.210600092 |
[4] | 侯夏晔, 陈海燕, 张兵, 袁立罡, 贾亦真. 一种基于支持向量机的主动度量学习算法 Active Metric Learning Based on Support Vector Machines 计算机科学, 2022, 49(6A): 113-118. https://doi.org/10.11896/jsjkx.210500034 |
[5] | 庞兴龙, 朱国胜. 基于半监督学习的网络流量分析研究 Survey of Network Traffic Analysis Based on Semi Supervised Learning 计算机科学, 2022, 49(6A): 544-554. https://doi.org/10.11896/jsjkx.210600131 |
[6] | 王宇飞, 陈文. 基于DECORATE集成学习与置信度评估的Tri-training算法 Tri-training Algorithm Based on DECORATE Ensemble Learning and Credibility Assessment 计算机科学, 2022, 49(6): 127-133. https://doi.org/10.11896/jsjkx.211100043 |
[7] | 张文轩, 吴秦. 基于多分支注意力增强的细粒度图像分类 Fine-grained Image Classification Based on Multi-branch Attention-augmentation 计算机科学, 2022, 49(5): 105-112. https://doi.org/10.11896/jsjkx.210100108 |
[8] | 李勇, 吴京鹏, 张钟颖, 张强. 融合快速注意力机制的节点无特征网络链路预测算法 Link Prediction for Node Featureless Networks Based on Faster Attention Mechanism 计算机科学, 2022, 49(4): 43-48. https://doi.org/10.11896/jsjkx.210800276 |
[9] | 许华杰, 陈育, 杨洋, 秦远卓. 基于混合样本自动数据增强技术的半监督学习方法 Semi-supervised Learning Method Based on Automated Mixed Sample Data Augmentation Techniques 计算机科学, 2022, 49(3): 288-293. https://doi.org/10.11896/jsjkx.210100156 |
[10] | 颜锐, 梁智勇, 李锦涛, 任菲. 基于深度学习和H&E染色病理图像的肿瘤相关指标预测研究综述 Predicting Tumor-related Indicators Based on Deep Learning and H&E Stained Pathological Images:A Survey 计算机科学, 2022, 49(2): 69-82. https://doi.org/10.11896/jsjkx.210900140 |
[11] | 赵学磊, 季新生, 刘树新, 李英乐, 李海涛. 基于路径连接强度的有向网络链路预测方法 Link Prediction Method for Directed Networks Based on Path Connection Strength 计算机科学, 2022, 49(2): 216-222. https://doi.org/10.11896/jsjkx.210100107 |
[12] | 侯宏旭, 孙硕, 乌尼尔. 蒙汉神经机器翻译研究综述 Survey of Mongolian-Chinese Neural Machine Translation 计算机科学, 2022, 49(1): 31-40. https://doi.org/10.11896/jsjkx.210900006 |
[13] | 田嵩旺, 蔺素珍, 杨博. 基于多判别器的多波段图像自监督融合方法 Multi-band Image Self-supervised Fusion Method Based on Multi-discriminator 计算机科学, 2021, 48(8): 185-190. https://doi.org/10.11896/jsjkx.200600132 |
[14] | 卿来云, 张建功, 苗军. 在线异常事件检测的时序建模 Temporal Modeling for Online Anomaly Detection 计算机科学, 2021, 48(7): 206-212. https://doi.org/10.11896/jsjkx.200900093 |
[15] | 陈慧琴, 郭贯成, 秦朝轩, 李兆碧. 基于GM-LSTM模型的南京市老年人口预测研究 Research on Elderly Population Prediction Based on GM-LSTM Model in Nanjing City 计算机科学, 2021, 48(6A): 231-234. https://doi.org/10.11896/jsjkx.200900142 |
|