基于改进樽海鞘算法的共享单车分布密度优化

计算机科学 ›› 2021, Vol. 48 ›› Issue (11A): 106-110.doi: 10.11896/jsjkx.210700096

• 智能计算 • 上一篇    下一篇

基于改进樽海鞘算法的共享单车分布密度优化

周川   

  1. 江苏理工学院商学院 江苏 常州213001
  • 出版日期:2021-11-10 发布日期:2021-11-12
  • 通讯作者: 周川(nufe_zc@163.com)
  • 基金资助:
    江苏省自然科学基金(BK20170315)

Optimization of Sharing Bicycle Density Distribution Based on Improved Salp Swarm Algorithm

ZHOU Chuan   

  1. School of Business,Jiangsu University of Technology,Changzhou,Jiangsu 213001,China
  • Online:2021-11-10 Published:2021-11-12
  • About author:ZHOU Chuan,born in 1990,master,associate researcher.Her main research interests include intelligent algorithm and data mining.
  • Supported by:
    Natural Science Fundation of Jiangsu Province,China(BK20170315).

摘要: 针对城市共享单车分布密度优化问题,提出了一种改进樽海鞘算法。首先,将共享单车分布密度优化问题转换成函数优化问题,以等待时间、花费时间、费用及安全代价为评价指标,建立目标函数。其次,引入一维正态云模型和非线性递减控制策略来改进樽海鞘算法中引领者的搜索机制,增强对局部数据的挖掘能力;引入自适应策略来改进原算法跟随者搜索机制,避免算法陷入局部最优值。最后,通过标准测试函数以及共享单车分布密度优化仿真对所提优化算法的有效性进行了验证,结果表明:相比原樽海鞘算法、萤火虫算法及人工蜂群算法,改进的樽海鞘算法具有更好的稳定性和全局搜索能力,能够更好地实现对共享单车分布密度的优化,提升共享单车的区域利用率,对智慧交通的发展有一定的参考价值。

关键词: 分布密度优化, 共享单车, 云模型, 自适应策略, 樽海鞘算法

Abstract: In this article,an improved sea-squirt algorithm is proposed for the urban bike-sharing distribution density optimization problem.First,the sharing bicycle distribution density optimization problem is converted into a functional optimization problem,and the objective function of optimization is established with waiting time,time spent,cost and safety cost as evaluation indexes.Secondly,a one-dimensional normal cloud model and a nonlinear decreasing control strategy are introduced to improve the leader search mechanism in the Bottleneck algorithm to enhance the mining ability of local data;an adaptive strategy is introduced to improve the follower search mechanism of the original algorithm to avoid the algorithm falling into the local optimum.Finally,the effectiveness of the proposed optimization algorithm is verified by the standard test function and the simulation of shared bicycle distribution density.The results show that the improved Bottlenose sheath algorithm has better stability and global search capability than the original algorithm,firefly algorithm and artificial bee colony algorithm,and can better optimize the distribution density of shared bicycles and improve the regional utilization rate of shared bicycles,which is a reference value for the development of intelligent transportation.It has certain reference value for the development of intelligent transportation.

Key words: Adaptive strategy, Cloud model, Distribution density optimization, Public bicycle, Salp swarm algorithm

中图分类号: 

  • TN911.1-34
[1]IRIMTAT A,KREJCAR O,KERTESZ A,et al.Future trendsand current state of smart city concepts:A survey[J].IEEE Access,2020,8:86448-86467.
[2]LI X P,LIU L,WANG C.Research on scheduling optimization problem of shared bikes[J].Mathematics in Practice and Theory,2021,51(6):30-40.
[3]ZUO N N.Study on urban sharing bike optimization distribution based on swarm intelligent optimization algorithm[J].Mo-dern Electronics Technique,2021,44(1):115-119.
[4]DUAN Y,WU J,ZHENG H.A greedy approach for vehiclerouting when rebalancing bike sharing systems[C]//2018 IEEE Global Communications Conference (GLOBECOM).IEEE,2018:1-7.
[5]JIA H,MIAO H,TIAN G,et al.Multi-objective bike repositioning in bike-sharing systems via a modified artificial bee colony algorithm[J].IEEE Transactions on Automation Science and Engineering,2019,17(2):909-920.
[6]DING L,GAO Z Q,YU Q.Optimal attitude control for quadrotor aircraft based on improved salp swarm algorithm[J].Transactions of the Chinese Society for Agricultural Machinery,2019,50(10):243-250.
[7]MIRJALILI S,GANDOMI A H,MIRJALILI S Z,et al.SalpSwarm Algorithm:A bio-inspired optimizer for engineering design problems[J].Advances in Engineering Software,2017,114:163-191.
[8]HEGAZY A E,MAKHLOUF M A,EL-TAWEL G S.Im-proved salp swarm algorithm for feature selection[J].Journal of King Saud University-Computer and Information Sciences,2020,32(3):335-344.
[9]ZHANG J,WANG Z,LUO X.Parameter estimation for soil water retention curve using the salp swarm algorithm[J].Water,2018,10(6):815-825.
[10]CHEN J,WANG W,CHEN X,et al.Research on the layout of bike rental stations around a railway station[J].Journal of Wuhan University of Technology (Transportation Science & Engineering),2013,37(6):1206-1210.
[11]CAI S,LONG X,LI L,et al.Determinants of intention and behavior of low carbon commuting through bicycle-sharing in China[J].Journal of Cleaner Production,2019,212:602-609.
[12]HOOGENDOORN S P,DAAMEN W.Free speed distributions for pedestrian traffic[C]// Proc.85th Annual Meeting of Transportation Research Board.Washington DC,2006:22-26.
[13]FARIS H,MIRJALILI S,ALJARAH I,et al.Salp swarm algorithm:theory,literature review,and application in extreme learning machines[J].Natureinspired Optimizers,2020:185-199.
[14]YAN F,XU K.Methodology and case study of quantitativepreliminary hazard analysis based on cloud model[J].Journal of Loss Prevention in the Process Industries,2019,60:116-124.
[15]LI R X,DING L.Path planning for unmanned air vehicles using artificial bee colony algorithm based on cloud model[J].Computer Science,2015,42(S2):89-92.
[16]WU J,NAN R,CHEN L.Improved salp swarm algorithm based on weight factor and adaptive mutation[J].Journal of Experimental & Theoretical Artificial Intelligence,2019,31(3):493-515.
[17]ÖZYÖN S,YAŞAR C,TEMURTAŞ H.Incremental gravitati-onal search algorithm for high-dimensional benchmark functions[J].Neural Computing and Applications,2019,31(8):3779-3803.
[18]SAMPATHKUMAR A,MULERIKKAL J,SIVARAM M.Glowworm swarm optimization for effectual load balancing and routing strategies in wireless sensor networks[J].Wireless Networks,2020,26(6):4227-4238.
[19]CHEN J,YU W,TIAN J,et al.Image contrast enhancementusing an artificial bee colony algorithm[J].Swarm and Evolutiona-ry Computation,2018,38:287-294.
[20]YANG Z,SUN Y,LI J,et al.Optimization of Public Bi-cycleDistribution Density Considering the Price Curve of Public Space Occupancy[J].Journal of Urban Planning and Development,2020,146(3):1-9.
[1] 杨玉丽, 李宇航, 邓岸华.
面向个性化需求的云制造服务可信评价模型
Trust Evaluation Model of Cloud Manufacturing Services for Personalized Needs
计算机科学, 2022, 49(3): 354-359. https://doi.org/10.11896/jsjkx.210200116
[2] 林忠甫, 颜力, 黄伟, 李洁.
基于参数自适应策略的改进乌鸦搜索算法
Improved Crow Search Algorithm Based on Parameter Adaptive Strategy
计算机科学, 2021, 48(6A): 260-263. https://doi.org/10.11896/jsjkx.201100158
[3] 董明刚,刘宝,敬超.
模糊自适应排序变异多目标差分进化算法
Multi-objective Differential Evolution Algorithm with Fuzzy Adaptive Ranking-based Mutation
计算机科学, 2019, 46(7): 224-232. https://doi.org/10.11896/j.issn.1002-137X.2019.07.034
[4] 孙明玮, 齐玉东.
基于云模型和改进灰色关联分析模型的网络服务质量综合评估
Comprehensive Evaluation of Network Service Quality Based on Cloud Model
and Improved Grey Relational Analysis Model
计算机科学, 2019, 46(5): 315-319. https://doi.org/10.11896/j.issn.1002-137X.2019.05.049
[5] 孙博文, 韦素媛.
基于自适应调整策略灰狼算法的DV-Hop定位算法
DV-Hop Localization Algorithm Based on Grey Wolf Optimization Algorithm with
Adaptive Adjutment Strategy
计算机科学, 2019, 46(5): 77-82. https://doi.org/10.11896/j.issn.1002-137X.2019.05.012
[6] 卢用煌,黄山.
基于自适应角度的三维点云分割方法
3D Point Cloud Segmentation Method Based on Adaptive Angle
计算机科学, 2017, 44(Z11): 166-168. https://doi.org/10.11896/j.issn.1002-137X.2017.11A.034
[7] 杜波,俞岩,戴刚.
基于云模型的指挥信息多重协同过滤算法研究
Study on Multi-collaborative Filtering Algorithm of Command Information Based on Cloud Models
计算机科学, 2017, 44(Z11): 470-475. https://doi.org/10.11896/j.issn.1002-137X.2017.11A.100
[8] 曹如胜,倪世宏,张鹏.
基于云遗传退火的贝叶斯网络结构学习算法
Bayesian Networks Structure Learning Algorithm Based on Cloud Genetic Annealing
计算机科学, 2017, 44(9): 239-242. https://doi.org/10.11896/j.issn.1002-137X.2017.09.045
[9] 陈晖,马亚平.
目标威胁评估的一种改进影响网络方法
Improved Influence Network Approach to Target Threat Assessment
计算机科学, 2017, 44(8): 162-167. https://doi.org/10.11896/j.issn.1002-137X.2017.08.029
[10] 包晓安,杨亚娟,张娜,林青霞,俞成海.
基于自适应粒子群优化的组合测试用例生成方法
Test Case Generation Method Based on Adaptive Particle Swarm Optimization
计算机科学, 2017, 44(6): 177-181. https://doi.org/10.11896/j.issn.1002-137X.2017.06.030
[11] 崔铁军,李莎莎,王来贵.
基于属性圆的多属性决策云模型构建与可靠性分析应用
Multi-attribute Decision Making Model Based on Attribute Circle and Application of Reliability Analysis
计算机科学, 2017, 44(5): 111-115. https://doi.org/10.11896/j.issn.1002-137X.2017.05.020
[12] 陈昊,李兵.
基于均匀分布的高斯云模型
Gauss Cloud Model Based on Uniform Distribution
计算机科学, 2016, 43(9): 238-241. https://doi.org/10.11896/j.issn.1002-137X.2016.09.047
[13] 徐雪飞,李建华,杨迎辉,郭蓉.
基于云模型的军事航空通信频谱共享信任机制研究
Military Aeronautical Communication Spectrum Sharing Trust Mechanism Based on Cloud Model
计算机科学, 2016, 43(9): 169-174. https://doi.org/10.11896/j.issn.1002-137X.2016.09.033
[14] 曹如胜,倪世宏,张鹏,奚显阳.
一种基于云模型的贝叶斯网络EM参数学习算法
EM Parameter Learning Algorithm of Bayesian Network Based on Cloud Model
计算机科学, 2016, 43(8): 194-198. https://doi.org/10.11896/j.issn.1002-137X.2016.08.039
[15] 赵佳,肖斌,李伟生,王国胤.
基于自适应云模型的多模态脑部图像融合方法
Fusion Method of Multi-model Brain Images Based on Adaptive Cloud Model
计算机科学, 2016, 43(11): 291-296. https://doi.org/10.11896/j.issn.1002-137X.2016.11.056
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!