基于双向注意力机制的问答情感分类方法

计算机科学 ›› 2019, Vol. 46 ›› Issue (7): 151-156.doi: 10.11896/j.issn.1002-137X.2019.07.024

• 人工智能 • 上一篇    下一篇

基于双向注意力机制的问答情感分类方法

沈忱林,张璐,吴良庆李寿山   

  1. (苏州大学计算机科学与技术学院 江苏 苏州215006)
  • 收稿日期:2018-06-12 出版日期:2019-07-15 发布日期:2019-07-15
  • 作者简介:沈忱林(1993-),男,硕士生,CCF学生会员,主要研究方向为自然语言处理、情感分析,E-mail:clshen@stu.suda.edu.cn;张 璐(1994-),女,硕士生,主要研究方向为自然语言处理、情感分析;吴良庆(1995-),男,硕士生,主要研究方向为自然语言处理、情感分析;李寿山(1980-),男,教授,主要研究方向为自然语言处理、情感分析,E-mail:lishoushan@.suda.edu.cn(通信作者)。
  • 基金资助:
    国家自然科学基金(61331011,61375073)资助

Sentiment Classification Towards Question-Answering Based on Bidirectional Attention Mechanism

SHEN Chen-lin,ZHANG Lu,WU Liang-qing,LI Shou-shan   

  1. (School of Computer Science & Technology,Soochow University,Suzhou,Jiangsu 215006,China)
  • Received:2018-06-12 Online:2019-07-15 Published:2019-07-15

摘要: 情感分类是自然语言处理研究中的一项基本任务,旨在判别文本的情感极性。目前,情感分类相关研究主要针对句子、篇章和微博等文本形式。与以往研究不同的是,文中面向新颖的问答型评论展开情感分类。首先,收集并标注了大规模、高质量的问答型评论语料集;针对问答型评论的特点,提出了一种基于双向注意力机制的神经网络方法。具体而言,该方法首先通过双向LSTM对问题文本和答案文本分别编码,再通过双向注意力机制同时计算问题文本和答案文本的情感权重,最后通过情感权重计算得到问答型评论的情感匹配信息。实验结果表明,提出的方法在问答情感分类任务上达到了75.5%的准确率和61.4%的F1值,相较于其他基准方法有明显的提升。

关键词: 情感分类, 问答, 注意力机制

Abstract: Sentiment classification is a fundamental task in natural language processing,which aims at inferring the sentiment polarity of a given text.Previous studies for sentiment classification,mainly focus on sentence,document and tweet text styles.Different from these researches,this paper focused on a novel text style,i.e.,question-answering (QA) review,for sentiment classification.Firstly,a large-scale and high-quality QA review corpus was collected and built.Then,a bidirectional attention neural network for QA sentiment classification was proposed.Specifically,the question and answer text with Bi-LSTM were encoded respectively.After that,sentiment weights in question and answer text were calculated synchronously by employing bidirectional attention mechanism.Finally,the sentiment matching representation for each QA review with sentiment weights can be obtained.Empirical studies show that the proposed approach achieves a great result (75.5% in Accuracy and 61.4% in Macro F1),and has remarkable improvement compared with other baselines.

Key words: Attention mechanism, Question-Answering, Sentiment classification

中图分类号: 

  • TP391
[1]ZHAO Y Y,QIN B,LIU T.Sentiment Analysis [J].Journal of Software,2010,21(8):1834-1848.(in Chinese)
赵妍妍,秦兵,刘挺.文本情感分析 [J].软件学报,2010,21(8):1834-1848.
[2]ZHANG Y F,LAI G K,ZHANG M,et al.Explicit Factor Mo- dels for Explainable Recommendation Based on phrase-level Sentiment Analysis[C]∥Proceedings of the 37th International ACM SIGIR Conference on Research & Development in Information Retrieval.2014:83-92.
[3]CHAMBERS N,BOWEN V,GENCO E,et al.Identifying Politi- cal Sentiment between Nation States with Social Media[C]∥Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing.2015:65-75.
[4]WANG R H,CUI X M,ZHOU W,et al.Research of Text Sen- timent Classification Based on Improved Semantic Comprehension [J].Computer Science,2017,44(S2):92-97.(in Chinese)
王日宏,崔兴梅,周炜,等.改进的基于语义理解的文本情感分类方法研究 [J].计算机科学,2017,44(S2):92-97.
[5]XU J C,CHEN D L,QIU X P,et al.Cached Long Short-Term Memory Neural Networks for Document-level Sentiment Classification[C]∥Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing.2016:1660-1669.
[6]TURKEY P D.Thumbs up or Thumbs down?:Semantic Orientation Applied to Unsupervised Classification of Reviews[C]∥Proceedings of the 40th Annual Meeting on Association for Computational Linguistics.2002:417-424.
[7]TANG D Y,WEI F R,YANG N,et al.Learning Sentiment Specific Word Embedding for Twitter Sentiment Classification[C]∥Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics.2014:1555-1565.
[8]MATSUMOTO S,TAKAMURA H,OKUMURA M.Senti- ment Classification Using Word Sub-sequence and Dependency Sub-trees[C]∥Proceedings of Pacific-Asia Conference on Knowledge Discovery and Data Mining.2005:301-311.
[9]ZHOU X J,WAN X J,XIAO J G.Cross-lingual Sentiment Classification with Bilingual Document Representation Learning[C]∥Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics.2016:1403-1412.
[10]LI S S,HUANG C R,ZHOU G D,et al.Employing Personal/Impersonal Views in Supervised and Semi-supervised Sentiment Classification[C]∥Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics.2010:414-423.
[11]XIA R,WANG C,DAI X Y,et al.Co-training for Semi-supervised Sentiment Classification Based on Dual-view Bags-of-words Representation[C]∥Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing.2015:1054-1063.
[12]PONTIKI M,GALANIS D,PAVLOPOULOS J,et al.SemEval-2014 Task 4:Aspect Based Sentiment Analysis[C]∥Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016).2016:19-30.
[13]WANG Y Q,HUANG M L,ZHAO L,et al.Attention-based LSTM for Aspect-level Sentiment Classification[C]∥Procee-dings of the 2016 Conference on Empirical Methods in Natural Language Processing.2016:606-615.
[14]TANG D Y,QIN B,LIU T.Aspect Level Sentiment Classification with Deep Memory Network[C]∥Proceedings of the 2016 Conference on Empirical Methods in Natural Language Proces-sing.2016:214-224.
[15]HOCHREITER S,SCHMIDHUBER J.Long Short-term Me- mory [J].Neural Computation,1997,9(8):1735-1780.
[16]LUONG T,PHAM H,MANNINGC D.Effective Approaches to Attention-based Neural Machine Translation[C]∥Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing.2015:1412-1421.
[17]PENG Y,HE X,ZHAO J.Object-part Attention Model for Fine-grained Image Classification [J].IEEE Transactions on Image Processing,2018,27(3):1487-1500.
[18]YANG Z C,YANG D Y,DYER C,et al.Hierarchical Attention Networks for Document Classification[C]∥Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2016:1480-1489.
[19]CUI Y M,CHEN Z P,WEI S,et al.Attention-over-attention Neural Networks for Reading Comprehension[C]∥Proceedings of the 55th Annual Meeting of the Association for Computatio-nal Linguistics.2017:593-602.
[20]KINGMA D,BA J.Adam:A Method for Stochastic Optimization [C]∥Proceedings of the 3rd International Conference on Learning Representations.2015:1-15.
[21]LEI T,BARZILAY R,JAAKKOLA T.Molding CNNs for Text:Non-linear,Non-consecutive Convolutions[C]∥Procee-dings of the 2015 Conference on Empirical Methods in Natural Language Processing.2015:1565-1575.
[22]WANG Z G,HAMZA W,FLORIAN R.Bilateral Multi-perspec- tive Matching for Natural Language Sentences[C]∥Proceedings of the 2017 International Joint Conferences on Artificial Intelligence.2017:4144-4150.
[1] 饶志双, 贾真, 张凡, 李天瑞.
基于Key-Value关联记忆网络的知识图谱问答方法
Key-Value Relational Memory Networks for Question Answering over Knowledge Graph
计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277
[2] 周芳泉, 成卫青.
基于全局增强图神经网络的序列推荐
Sequence Recommendation Based on Global Enhanced Graph Neural Network
计算机科学, 2022, 49(9): 55-63. https://doi.org/10.11896/jsjkx.210700085
[3] 戴禹, 许林峰.
基于文本行匹配的跨图文本阅读方法
Cross-image Text Reading Method Based on Text Line Matching
计算机科学, 2022, 49(9): 139-145. https://doi.org/10.11896/jsjkx.220600032
[4] 周乐员, 张剑华, 袁甜甜, 陈胜勇.
多层注意力机制融合的序列到序列中国连续手语识别和翻译
Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion
计算机科学, 2022, 49(9): 155-161. https://doi.org/10.11896/jsjkx.210800026
[5] 熊丽琴, 曹雷, 赖俊, 陈希亮.
基于值分解的多智能体深度强化学习综述
Overview of Multi-agent Deep Reinforcement Learning Based on Value Factorization
计算机科学, 2022, 49(9): 172-182. https://doi.org/10.11896/jsjkx.210800112
[6] 姜梦函, 李邵梅, 郑洪浩, 张建朋.
基于改进位置编码的谣言检测模型
Rumor Detection Model Based on Improved Position Embedding
计算机科学, 2022, 49(8): 330-335. https://doi.org/10.11896/jsjkx.210600046
[7] 汪鸣, 彭舰, 黄飞虎.
基于多时间尺度时空图网络的交通流量预测模型
Multi-time Scale Spatial-Temporal Graph Neural Network for Traffic Flow Prediction
计算机科学, 2022, 49(8): 40-48. https://doi.org/10.11896/jsjkx.220100188
[8] 朱承璋, 黄嘉儿, 肖亚龙, 王晗, 邹北骥.
基于注意力机制的医学影像深度哈希检索算法
Deep Hash Retrieval Algorithm for Medical Images Based on Attention Mechanism
计算机科学, 2022, 49(8): 113-119. https://doi.org/10.11896/jsjkx.210700153
[9] 孙奇, 吉根林, 张杰.
基于非局部注意力生成对抗网络的视频异常事件检测方法
Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection
计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061
[10] 闫佳丹, 贾彩燕.
基于双图神经网络信息融合的文本分类方法
Text Classification Method Based on Information Fusion of Dual-graph Neural Network
计算机科学, 2022, 49(8): 230-236. https://doi.org/10.11896/jsjkx.210600042
[11] 金方焱, 王秀利.
融合RACNN和BiLSTM的金融领域事件隐式因果关系抽取
Implicit Causality Extraction of Financial Events Integrating RACNN and BiLSTM
计算机科学, 2022, 49(7): 179-186. https://doi.org/10.11896/jsjkx.210500190
[12] 熊罗庚, 郑尚, 邹海涛, 于化龙, 高尚.
融合双向门控循环单元和注意力机制的软件自承认技术债识别方法
Software Self-admitted Technical Debt Identification with Bidirectional Gate Recurrent Unit and Attention Mechanism
计算机科学, 2022, 49(7): 212-219. https://doi.org/10.11896/jsjkx.210500075
[13] 彭双, 伍江江, 陈浩, 杜春, 李军.
基于注意力神经网络的对地观测卫星星上自主任务规划方法
Satellite Onboard Observation Task Planning Based on Attention Neural Network
计算机科学, 2022, 49(7): 242-247. https://doi.org/10.11896/jsjkx.210500093
[14] 张颖涛, 张杰, 张睿, 张文强.
全局信息引导的真实图像风格迁移
Photorealistic Style Transfer Guided by Global Information
计算机科学, 2022, 49(7): 100-105. https://doi.org/10.11896/jsjkx.210600036
[15] 曾志贤, 曹建军, 翁年凤, 蒋国权, 徐滨.
基于注意力机制的细粒度语义关联视频-文本跨模态实体分辨
Fine-grained Semantic Association Video-Text Cross-modal Entity Resolution Based on Attention Mechanism
计算机科学, 2022, 49(7): 106-112. https://doi.org/10.11896/jsjkx.210500224
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!