基于矢量空间重构的网络流量预测算法

计算机科学 ›› 2016, Vol. 43 ›› Issue (7): 111-114.doi: 10.11896/j.issn.1002-137X.2016.07.019

• 网络与通信 • 上一篇    下一篇

基于矢量空间重构的网络流量预测算法

张涛,张颖江   

  1. 湖北工业大学信息技术中心 武汉430068,湖北工业大学信息技术中心 武汉430068
  • 出版日期:2018-12-01 发布日期:2018-12-01

Network Traffic Prediction Algorithm Based on Vector Space Reconstruction

ZHANG Tao and ZHANG Ying-jiang   

  • Online:2018-12-01 Published:2018-12-01

摘要: 客户机与服务器之间存在数据存储隐通道,对该通道的网络流量进行准确预测可避免网络拥堵,提高网络流量的调度和管理能力。传统方法采用线性时间序列分析方法进行网络流量预测,没有准确反映流量序列的非线性特征信息,预测精度不高。提出一种基于非线性时间序列分析和矢量空间重构的网络流量预测算法。进行相位随机化处理,使得网络流量数据离散解析化,把网络流量时间序列解析模型分解为含有多个非线性成分的统计量。采用自相关函数法求得矢量空间重构的时间延迟,采用互信息最小嵌入维算法求得网络流量序列的矢量空间嵌入维,实现流量序列的矢量空间重构。在高维矢量空间中,提取网络流量的高阶谱特征,实现网络流量的准确预测。仿真结果表明,采用该算法能有效拟合流量序列的非线性状态特征,对流量状态变化的动态跟踪性能较好,其预测误差比传统方法的低。

关键词: 网络流量,预测,矢量空间重构,非线性

Abstract: There is a data storage covert channel between the client and the server,and the network traffic on the channel needs to be accurately predicted,which can avoid network congestion and improve network traffic scheduling and management ability.In the traditional method,the linear time series analysis method is used to predict the network traffic,which can not accurately reflect the nonlinear characteristic information,and the prediction accuracy is not high.A network traffic prediction algorithm was proposed based on nonlinear time series analysis and vector space reconstruction.The phase randomization process makes the network traffic data discrete analysis,and the network traffic time series analysis model is decomposed into the statistics of multiple nonlinear components.The self correlation function is used to obtain the vector space reconstruction time delay,and the mutual information minimum embedding dimension algorithm is used to obtain vector space embedding dimension of network flow sequence,which realizes the vector space reconstruction of flow sequence.In the high dimensional vector space,the high order spectral characteristics of the network traffic are extracted,the accurate prediction of the network traffic is realized.Simulation results show that the proposed algorithm can effectively simulate the nonlinear state characteristics of the traffic sequence,the dynamic tracking performance of the traffic state is better,and the prediction error is lower than the conventional method.

Key words: Network traffic,Prediction,Vector space reconstruction,Nonlinear

[1] Yang Lei,Li Gui-peng,Zhang Ping.Improvement of Wolf step by step prediction of network anomaly traffic detection [J].Technology Bulletin,2014,30(2):47-49(in Chinese) 杨雷,李贵鹏,张萍.改进的Wolf一步预测的网络异常流量检测[J].科技通报,2014,30(2):47-49
[2] Li Zhen-gang.Network traffic forecasting model based on Gaus-sian process regression[J].Journal of Computer Applications,2014,34(5):1251-1254(in Chinese) 李振刚.基于高斯过程回归的网络流量预测模型[J].计算机应用,2014,34(5):1251-1254
[3] Chang Y C,Lin Z S,Chen J L.Cluster based self organization management protocols for wireless sensor networks[J].IEEE Transactions on Consumer Electronics,2006,52(1):75-80
[4] Kolhe J P,Shaheed M,Chandar T S,et al.Robust control of robot manipulators based on uncertainty and disturbance estimation[J].International Journal of Robust and Nonlinear Control,2013,23(1):104-122
[5] Liu Yun-tong.K-pruning algorithm for semantic relevancy calculating model of natural language[J].Journal of Theoretical and Applied Information Technology,2013,8(3),231-235
[6] Lu Xing-hua,Chen Ping-hua.Traffic Prediction Algorithm inBuffer Based on Recurrence Quantification Union Entropy Feature Reconstruction[J].Computer Science,2015,2(4):68-71(in Chinese) 陆兴华,陈平华.基于定量递归联合熵特征重构的缓冲区流量预测算法[J].计算机科学,2015,2(4):68-71
[7] Zhai Hai-bin,Zhang Hong,Liu Xin-ran,et al.A P2P Cache Capacity Design Method to Minimize the Total Traffic Cost of Access ISPs[J].Acta Electronica Sinica,2015,43(5):879-887(in Chinese) 翟海滨,张鸿,刘欣然,等.最小化出口流量花费的接入级P2P缓存容量设计方法[J].电子学报,2015,43(5):879-887
[8] Ma You-zhong,Meng Xiao-feng.Research on index technologyof cloud data management[J].Journal of Software,2015,6(1):145-166(in Chinese) 马友忠,孟小峰.云数据管理索引技术研究[J].软件学报,2015,6(1):145-166
[9] Sahu P K,Wu E H K,Sahoo J,et al.BAHG:Back-Bone-Assisted Hop Greedy Routing for VANET's City Environments[J].IEEE Transactions on Intelligent Transportation Systems,2013,4(1):199-213
[10] Barrachina J,Garrido P,Fogue M,et al.VEACON:A Vehicular Accident Ontology Designed to Improve Safety on the Roads[J].Journal of Network and Computer Applications,2012,5(6):1891-1900
[11] Shi Gui-min,Lin Hong-ji.Research on Network Flow Monitoring Pattern Based on Bypass[J].Journal of Chongqing University of Technology(Natural Science),2011,5(9):63-69(in Chinese) 石贵民,林宏基.基于旁路的网络流量监控模式[J].重庆理工大学学报(自然科学),2011,5(9):63-69

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!