科研社交网络中基于联合概率矩阵分解的科技论文推荐方法研究

计算机科学 ›› 2016, Vol. 43 ›› Issue (9): 213-217.doi: 10.11896/j.issn.1002-137X.2016.09.042

• 人工智能 • 上一篇    下一篇

科研社交网络中基于联合概率矩阵分解的科技论文推荐方法研究

吴燎原,蒋军,王刚   

  1. 合肥工业大学科学技术研究院 合肥230009,合肥工业大学管理学院 合肥230009,合肥工业大学管理学院 合肥230009
  • 出版日期:2018-12-01 发布日期:2018-12-01
  • 基金资助:
    本文受国家自然科学基金(71101042,4),安徽省自然科学基金(1608085MG150)资助

Study of Scientific Paper Recommendation Method Based on Unified Probabilistic Matrix Factorization in Scientific Social Networks

WU Liao-yuan, JIANG Jun and WANG Gang   

  • Online:2018-12-01 Published:2018-12-01

摘要: 近年来随着科研社交网络中科技论文数量爆炸式的增长,科研人员很难高效地找到与之相关的科技论文,因此面向科研工作者的科技论文推荐方法应运而生。然而,传统的科技论文推荐方法没有充分挖掘科研社交网络中广泛存在的社会化信息,导致科技论文推荐质量不高。为此,提出了一种科研社交网络中基于联合概率矩阵分解的科技论文推荐方法,在传统概率矩阵分解的基础上,融入了社会化标签信息和社会化群组信息来进行科技论文推荐。为了验证所提方法的有效性,抓取了科研社交网络CiteULike上的数据进行了实验。实验结果表明,与其它传统推荐方法相比较,所提方法在Precision和Recall两个评价指标上均取得了较好的推荐结果,并且能够应用于大规模数据集,具有良好的可扩展性。

关键词: 科技论文推荐,科研社交网络,联合概率矩阵分解,推荐方法

Abstract: In recent years,the number of scientific papers in scientific social networks has grown at an explosive rate.It is difficult for researchers to find scientific papers related to their research.Therefore,the paper recommendation for researchers was proposed to solve this problem.However,many problems exist in traditional paper recommendation methods,especially for the fact that a lot of social information in scientific social network are not fully used,resulting in poor quality of paper recommendation.Therefore,this research proposed a new paper recommendation method for researchers in scientific social networks based on the unified probability matrix factorization.This method incorporates social tag information and group information into traditional matrix factorization.In order to verify the validity of the proposed method,we crawled data from a famous scientific social network,i.e.CiteULike,to conduct experiments.Experimental results show that the proposed method gets the best recommendation results at the two evaluation metrics,i.e. Precision and Recall,compared to other traditional recommendation methods.The proposed method is linear with respect to the number of observed data,and performs well in scalability.

Key words: Scientific paper recommendation,Scientific social network,Unified probabilistic matrix factorization,Recommendation method

[1] Liu J,Jiang Y,Li Z C,et al.Domain-Sensitive Recommendation with User-Item Subgroup Analysis[J].IEEE Transactions on Knowledge and Data Engineering,2016,28(4):939-949
[2] Zhao W D,Wu R,Liu H T.Paper recommendation based on the knowledge gap between a researcher’s background knowledge and research target[J].Information Processing and Management,2016,26(9):1-13
[3] Ren Ke,Huang Zhi-xing,Qiu Yu-hui.Interdisciplinary Collabo-rative Literature Recommendation Based Topic Modeling[J].Computer Science,2012,39(9):235-239,261(in Chinese) 任柯,黄智兴,邱玉辉.基于主题模型的跨学科协作文献推荐[J].计算机科学,2012,39(9):235-239,261
[4] Kim Y S.Text Recommender System Using User’s Usage Patterns[J].Industrial Management & Data Systems,2010,111(2):282-297
[5] Bogers T,Bosch D.Recommending Scientific Articles Using Citeulike[C]∥Proc of the ACM Conf on Recommender Systems.New York:ACM,2008:287-290
[6] Tian G,Jing L.Recommending Scientific Articles Using Bi-Relational Graph-Based Iterative Rwr[C]∥Proc of the 7th ACM Conf on Recommender Systems.2013:399-402
[7] Lai C H,Liu D R,Lin C S.Novel personal and group-based trust models in collaborative filtering for document recommendation[J].Information Sciences,2013,239(8):31-49
[8] Wang C,Blei D M.Collaborative Topic Modeling for Recommending Scientific Articles[C]∥Proc of the 17th ACM SIGKDD International Conf on Knowledge Discovery and Data Mining.2011:448-456
[9] Sun J S,Ma J,Liu Z Y,et al.Leveraging Content and Connection for Scientific Article Recommendation in Social Computing Contexts[J].The Computer Journal,2014,57(9):1331-1342
[10] Liang T P,Yang Y F,Chen D N,et al.A Semantic-Expansion Approach to Personalized Knowledge Recommendation[J].Decision Support Systems,2008,5(3):401-412
[11] Weng S,Chang H.Using Ontology Network Analysis for Research Document Recommendation[J].Expert Systems with Applications,2008,4(3):1857-1869
[12] Sun Guang-fu,Wu Le,Liu Qi,et al.Recommendation Based on Collaborative Filtering by Exploiting Sequential Behaviors[J].Journal of Software,2013,24(11):2721-2733(in Chinese) 孙光福,吴乐,刘淇,等.基于时序行为的协同过滤推荐算法[J].软件学报,2013,24(11):2721-2733
[13] Ma H,Zhou T C,Lyu M R,et al.Improving Recommender Systems by Incorporating Social Contextual Information[J].ACM Transactions on Information Systems,2011,29(2):1-23
[14] Jamali M,Ester M.A matrix factorization technique with trust propagation for recommendation in social networks[C]∥Proc of the ACM Conf.on Recommender Systems.New York:ACM,2010:135-142
[15] Tu Dan-dan,Shu Cheng-chun,Yu Hai-yan.Using Unified Pro-babilistic Matrix Factorization for Contextual Advertisement Recommendation[J].Journal of Software,2013,24(3):454-464(in Chinese) 涂丹丹,舒承椿,余海燕.基于联合概率矩阵分解的上下文广告推荐算法[J].软件学报,2013,4(3):454-464
[16] Jiang M,Cui P,Wang F,et al.Scalable Recommendation with Social Contextual Information[J].IEEE Transactions on Knowledge and Data Engineering,2014,26(11):2789-2802
[17] 项亮.推荐系统实践[M].北京:人民邮电出版社,2012

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!