面向自动化集装箱码头的AGV行驶时间估计

计算机科学 ›› 2022, Vol. 49 ›› Issue (9): 208-214.doi: 10.11896/jsjkx.210700028

• 人工智能 • 上一篇    下一篇

面向自动化集装箱码头的AGV行驶时间估计

冷典典, 杜鹏, 陈建廷, 向阳   

  1. 同济大学电子与信息工程学院 上海 201800
  • 收稿日期:2021-07-02 修回日期:2022-02-28 出版日期:2022-09-15 发布日期:2022-09-09
  • 通讯作者: 向阳(shxiangyang@tongji.edu.cn)
  • 作者简介:(1933049@tongji.edu.cn)
  • 基金资助:
    国家重点研发计划(2019YFB1704402)

Automated Container Terminal Oriented Travel Time Estimation of AGV

LENG Dian-dian, DU Peng, CHEN Jian-ting, XIANG Yang   

  1. College of Electronic and Information Engineering,Tongji University,Shanghai 201800,China
  • Received:2021-07-02 Revised:2022-02-28 Online:2022-09-15 Published:2022-09-09
  • About author:LENG Dian-dian,born in 1996,postgraduate.His main research interests include big data and machine learning.
    XIANG Yang,born in 1962,Ph.D,professor,Ph.D supervisor,is a senior member of China Computer Federation.His main research interests include na-tural language processing,data mining,knowledge graph,and so on.
  • Supported by:
    National Key Research and Development Program of China(2019YFB1704402).

摘要: 自动导引车(Automated Guided Vehicle,AGV)在自动化集装箱码头的水平运输中发挥了重要作用,对AGV行驶时间进行准确估计,有利于减少码头各作业环节的资源闲置,提高整体效率。针对AGV在自动化集装箱码头的行驶时间估计问题,提出了一种AGV行驶时间估计方法。首先,根据AGV的行驶模式将目标行驶路径切分为若干段,使用神经网络模型对其进行编码;其次,对该路径出发前后一段时间内的其他路径进行编码并将其作为环境信息,以通过模型预测其是否与目标路径发生冲突作为辅助任务;最后,综合两类信息对行驶时间进行估计。该方法引入了路径间冲突对时间估计造成的影响。基于自动化集装箱码头的历史数据的实验表明,相比AGV场景中常用的静态时间估计方法,所提方法能够将时间估计的误差降低18%以上,可以更准确地估计AGV的行驶时间。

关键词: 自动化集装箱码头, 行驶时间估计, AGV, 机器学习

Abstract: Automated guided vehicles(AGV)are crucial for the horizontal transportation of automated container terminals.Accurate estimation of the travel time of each AGV will reduce the number of idle AGV resources and increase the efficiency of the entire terminal.This paper proposes a method for travel time estimation of AGV in automated container terminals.Firstly,the target route of AGV is divided and encoded into several segments.Secondly,other routes are encoded as environment information,which depart before or after the target route.And the conflict between these routes and target route is estimated as an auxiliary task.Finally,the travel time with all encodings is calculated.The proposed method introduces the influence of path conflicts on time estimation.Experiments based on historical data of automated terminals show that,compared with static time estimation methods commonly used in AGV scenarios,the proposed method can reduce the time estimation error by more than 18%,and can estimate the travel time more accurately.

Key words: Automated container terminal, Travel time estimation, AGV, Machine learning

中图分类号: 

  • TP23
[1]HUO K G,ZHANG Y Q,HU Z H.Research on scheduling problem of multiload AGV at automated container terminal[J].Journal of Dalian University of Technology,2016,56(3):244-251.
[2]WANG H C,ZHANG Z W,ZHAO Y,et al.A dynamic time prediction method of AGV for vertical transportation:CN CN202110027744.2[P].2021-04-30.
[3]ZHONG M,YANG Y,DESSOUKY Y,et al.Multi-AGV sche-duling for conflict-free path planning in automated container terminals[J].Computers & Industrial Engineering,2020,142(Apr.):106371.1-106371.11.
[4]YUE X,XU X,WANG X.Research on MutiAGV SechdulingAlgorithm Based on Improved Hybrid PSOGA for FMS[J].Computer Science,2018,45(S2):167-171.
[5]GUO K,ZHU J,SHEN L.An Improved Acceleration Method Based on Multi-Agent System for AGVs Conflict-Free Path Planning in Automated Terminals[J].IEEE Access,2020,9:3326-3338.
[6]ZHANG Z,WU L,ZHANG W,et al.Energy-efficient path planning for a single-load automated guided vehicle in a manufactu-ring workshop[J].Computers & Industrial Engineering,2021,158:107397.
[7]WANG H,TANG X,KUO Y H,et al.A simple baseline for travel time estimation using large-scale trip data[J].ACM Transactions on Intelligent Systems and Technology(TIST),2019,10(2):1-22.
[8]YUAN H,LI G,BAO Z,et al.Effective travel time estimation:When historical trajectories over road networks matter[C]//Proceedings of the 2020 ACM SIGMOD International Confe-rence on Management of Data.2020:2135-2149.
[9]ZOU Z,YANG H,ZHU A X.Estimation of travel time based on ensemble method with multi-modality perspective urban big data[J].IEEE Access,2020,8:24819-24828.
[10]DE FABRITIIS C,RAGONA R,VALENTI G.Traffic estimation and prediction based on real time floating car data[C]//2008 11th International IEEE Conference on Intelligent Transportation Systems.IEEE,2008:197-203.
[11]HOFLEITNER A,HERRING R,ABBEEL P,et al.Learningthe dynamics of arterial traffic from probe data using a dynamic Bayesian network[J].IEEE Transactions on Intelligent Transportation Systems,2012,13(4):1679-1693.
[12]HUNTER T,HERRING R,ABBEEL P,et al.Path and travel time inference from GPS probe vehicle data[J].NIPS Analyzing Networks and Learning with Graphs,2009,12(1):2.
[13]WANG Z,FU K,YE J.Learning to estimate the travel time[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2018:858-866.
[14]XU J,ZHANG Y,CHAO L,et al.STDR:a deep learning me-thod for travel time estimation[C]//International Conference on Database Systems for Advanced Applications.Cham:Springer,2019:156-172.
[15]LIU W,HE J,WANG H,et al.A Novel Road Segment Representation Method for Travel Time Estimation[C]//DASFAA(Workshops).2021:398-413.
[16]FU T,LEE W C.Deepist:Deep image-based spatio-temporalnetwork for travel time estimation[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management.2019:69-78.
[17]WANG D,ZHANG J,CAO W,et al.When will you arrive? estimating travel time based on deep neural networks[C]//Procee-dings of the AAAI Conference on Artificial Intelligence.2018.
[18]CHEN T,GUESTRIN C.Xgboost:A scalable tree boosting system[C]//Proceedings of the 22ndACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2016:785-794.
[1] 宁晗阳, 马苗, 杨波, 刘士昌.
密码学智能化研究进展与分析
Research Progress and Analysis on Intelligent Cryptology
计算机科学, 2022, 49(9): 288-296. https://doi.org/10.11896/jsjkx.220300053
[2] 李瑶, 李涛, 李埼钒, 梁家瑞, Ibegbu Nnamdi JULIAN, 陈俊杰, 郭浩.
基于多尺度的稀疏脑功能超网络构建及多特征融合分类研究
Construction and Multi-feature Fusion Classification Research Based on Multi-scale Sparse Brain Functional Hyper-network
计算机科学, 2022, 49(8): 257-266. https://doi.org/10.11896/jsjkx.210600094
[3] 张光华, 高天娇, 陈振国, 于乃文.
基于N-Gram静态分析技术的恶意软件分类研究
Study on Malware Classification Based on N-Gram Static Analysis Technology
计算机科学, 2022, 49(8): 336-343. https://doi.org/10.11896/jsjkx.210900203
[4] 何强, 尹震宇, 黄敏, 王兴伟, 王源田, 崔硕, 赵勇.
基于大数据的进化网络影响力分析研究综述
Survey of Influence Analysis of Evolutionary Network Based on Big Data
计算机科学, 2022, 49(8): 1-11. https://doi.org/10.11896/jsjkx.210700240
[5] 陈明鑫, 张钧波, 李天瑞.
联邦学习攻防研究综述
Survey on Attacks and Defenses in Federated Learning
计算机科学, 2022, 49(7): 310-323. https://doi.org/10.11896/jsjkx.211000079
[6] 李亚茹, 张宇来, 王佳晨.
面向超参数估计的贝叶斯优化方法综述
Survey on Bayesian Optimization Methods for Hyper-parameter Tuning
计算机科学, 2022, 49(6A): 86-92. https://doi.org/10.11896/jsjkx.210300208
[7] 赵璐, 袁立明, 郝琨.
多示例学习算法综述
Review of Multi-instance Learning Algorithms
计算机科学, 2022, 49(6A): 93-99. https://doi.org/10.11896/jsjkx.210500047
[8] 肖治鸿, 韩晔彤, 邹永攀.
基于多源数据和逻辑推理的行为识别技术研究
Study on Activity Recognition Based on Multi-source Data and Logical Reasoning
计算机科学, 2022, 49(6A): 397-406. https://doi.org/10.11896/jsjkx.210300270
[9] 姚烨, 朱怡安, 钱亮, 贾耀, 张黎翔, 刘瑞亮.
一种基于异质模型融合的 Android 终端恶意软件检测方法
Android Malware Detection Method Based on Heterogeneous Model Fusion
计算机科学, 2022, 49(6A): 508-515. https://doi.org/10.11896/jsjkx.210700103
[10] 王飞, 黄涛, 杨晔.
基于Stacking多模型融合的IGBT器件寿命的机器学习预测算法研究
Study on Machine Learning Algorithms for Life Prediction of IGBT Devices Based on Stacking Multi-model Fusion
计算机科学, 2022, 49(6A): 784-789. https://doi.org/10.11896/jsjkx.210400030
[11] 许杰, 祝玉坤, 邢春晓.
机器学习在金融资产定价中的应用研究综述
Application of Machine Learning in Financial Asset Pricing:A Review
计算机科学, 2022, 49(6): 276-286. https://doi.org/10.11896/jsjkx.210900127
[12] 么晓明, 丁世昌, 赵涛, 黄宏, 罗家德, 傅晓明.
大数据驱动的社会经济地位分析研究综述
Big Data-driven Based Socioeconomic Status Analysis:A Survey
计算机科学, 2022, 49(4): 80-87. https://doi.org/10.11896/jsjkx.211100014
[13] 李野, 陈松灿.
基于物理信息的神经网络:最新进展与展望
Physics-informed Neural Networks:Recent Advances and Prospects
计算机科学, 2022, 49(4): 254-262. https://doi.org/10.11896/jsjkx.210500158
[14] 章晓庆, 方建生, 肖尊杰, 陈浜, RisaHIGASHITA, 陈婉, 袁进, 刘江.
基于眼前节相干光断层扫描成像的核性白内障分类算法
Classification Algorithm of Nuclear Cataract Based on Anterior Segment Coherence Tomography Image
计算机科学, 2022, 49(3): 204-210. https://doi.org/10.11896/jsjkx.201100085
[15] 张潆藜, 马佳利, 刘子昂, 刘新, 周睿.
以太坊Solidity智能合约漏洞检测方法综述
Overview of Vulnerability Detection Methods for Ethereum Solidity Smart Contracts
计算机科学, 2022, 49(3): 52-61. https://doi.org/10.11896/jsjkx.210700004
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!