计算机科学 ›› 2022, Vol. 49 ›› Issue (7): 254-262.doi: 10.11896/jsjkx.210600184
唐枫, 冯翔, 虞慧群
TANG Feng, FENG Xiang, YU Hui-qun
摘要: 多任务优化算法在各任务单独优化的同时进行任务间的知识迁移,从而提升多个任务的综合性能。然而,在相似度较低的任务间进行负向知识迁移反而会导致整体性能下降,且为难度不同的任务分配同等的计算资源会造成资源浪费。此外,在任务的不同阶段采用固定的搜索步长容易陷入局部最优。为解决上述问题,提出了一种基于自适应知识迁移与动态资源分配的多任务协同优化(Multitask Cooperative Optimization Algorithm Based on Adaptive Knowledge Transfer and Resource Allocation,AMTO)算法。首先,每个任务用一个单独的种群进行优化,并将一个种群分成3个子种群,采用3种不同的搜索策略,增加搜索行为的多样性,并且在单个任务内根据个体成功率来动态更新搜索步长,增强自适应搜索能力,避免陷入局部最优;其次,利用多个任务间知识迁移的反馈结果在线计算任务间相似度,并依据相似度自适应地调整迁移概率,同时,在相似度较低的任务间进行迁移时还需减去任务偏差,减小负向知识迁移造成的性能下降程度,提升算法对任务间差异的感知能力;然后,通过评估任务性能的提升度来估计任务难度与优化状态,对不同难度与状态的任务动态按需分配资源,最大限度地提升资源的利用率,减少资源浪费;最后,在简单与复杂两类多任务优化函数上,将本文算法与经典的多任务算法进行对比实验,验证了本文算法中自适应迁移策略、动态资源分配策略及其综合的有效性。
中图分类号:
[1]GUPTA A,ONG Y,FENG L.Insights on Transfer Optimization:Because Experience is the Best Teacher[J].IEEE Transactions on Emerging Topics in Computational Intelligence,2017,2(1):51-64. [2]GUPTA A,ONG Y,FENG L.Multifactorial Evolution:To-wards Evolutionary Multitasking[J].IEEE Transactions on Evo-lutionary Computation,2016,20(3):343-357. [3]SONG H,QIN A,TSAI P,et al.Multitasking Multi-Swarm Optimization[C]//IEEE Congress on Evolutionary Computation.2019:1937-1944. [4]FENG L,ZHOU W,ZHOU L,et al.An Empirical Study ofMultifactorial PSO and Multifactorial DE[C]//IEEE Congress on Evolutionary Computation.2017:921-928. [5]LI G,ZHANG Q,GAO W.Multipopulation Evolution Frame-work for Multifactorial Optimization [C]//Proceedings of the Genetic and Evolutionary Computation Conference Companion.Association for Computing Machinery.2018:215-216. [6]ZHOU Y,WANG T,PENG X.MFEA-IG:A Multi-Task Algorithm for Mobile Agents Path Planning[C]//IEEE Congress on Evolutionary Computation.2020:1-7. [7]LIN J,LIU H,TAN K,et al.An Effective Knowledge Transfer Approach for Multiobjective Multitasking Optimization[J].IEEE Transactions on Cybernetics,2021,51(6):3238-3248. [8]FENG L,HUANG Y,ZHOU L,et al.Explicit EvolutionaryMultitasking for Combinatorial Optimization:A Case Study on Capacitated Vehicle Routing Problem[J].IEEE Transactions on Cybernetics,2021,51(6):3134-3156. [9]LIN J,LIU H,XUE B,et al.Multiobjective Multitasking Optimization Based on Incremental Learning[J].IEEE Transactions on Evolutionary Computation,2020,24(5):824-838. [10]DING J,YANG C,JIN Y,et al.Generalized Multi-tasking forEvolutionary Optimization of Expensive Problems[J].IEEE Transactions on Evolutionary Computation,2019,23(1):44-58. [11]GONG M,TANG Z,LI H,et al.Evolutionary MultitaskingWith Dynamic Resource Allocating Strategy[J].IEEE Transactions on Evolutionary Computation,2019,23(5):858-869. [12]GUPTA A,ONG Y,FENG L,et al.Multiobjective Multifacto-rial Optimization in Evolutionary Multitasking[J].IEEE Transactions on Cybernetics,2017,47(7):1652-1665. [13]YUAN Y,ONG Y,FENG L,et al.Evolutionary Multitaskingfor Multiobjective Continuous Optimization:Benchmark Problems,Performance Metrics and Baseline Results[J].arXiv:1706.02766,2017. [14]LIANG Z,DONG H,LIU W,et al.Evolutionary Multitasking for Multiobjective Optimization With Subspace Alignment and Adaptive Differential Evolution[J].IEEE Transactions on Cybernetics,2020,52(4):2096-2109. [15]BALI K,GUPTA A,ONG Y,et al.Cognizant Multitasking in Multiobjective Multifactorial Evolution:MO-MFEA-II[J].IEEE Transactions on Cybernetics,2021,51(4):1784-1796. [16]YI J,BAI J,HE H,et al.A Multifactorial Evolutionary Algorithm for Multitasking Under Interval Uncertainties[J].IEEE Transactions on Evolutionary Computation,2020,24(5):908-922. [17]SHENG W,WANG X,WANG Z,et al.Adaptive Memetic Differential Evolution with Niching Competition and Supporting Archive Strategies for Multimodal Optimization[J].Information Sciences,2021,573:316-331. [18]BALI K,ONG Y,GUPTA A,et al.Multifactorial Evolutionary Algorithm with Online Transfer Parameter Estimation:MFEA-II[J].IEEE Transactions on Evolutionary Computation,2020,24(1):69-83. [19]DA B,ONG Y,FENG L,et al.Evolutionary Multitasking for Single-objective Continuous Optimization:Benchmark Problems,Performance Metric,and Baseline Results[J].arXiv:1706.03470,2017. |
[1] | 潘燕娜, 冯翔, 虞慧群. 基于自适应资源分配池的竞争合作群协同优化算法 Competitive-Cooperative Coevolution for Large Scale Optimization with Computation Resource Allocation Pool 计算机科学, 2022, 49(2): 182-190. https://doi.org/10.11896/jsjkx.201200012 |
[2] | 徐旭, 钱丽萍, 吴远. 基于移动边缘计算的区块链计算资源分配和收益分享研究 Computation Resource Allocation and Revenue Sharing Based on Mobile Edge Computing for Blockchain 计算机科学, 2021, 48(11): 124-132. https://doi.org/10.11896/jsjkx.201100205 |
|