随机多尺度序决策系统的最优尺度选择

计算机科学 ›› 2022, Vol. 49 ›› Issue (6): 172-179.doi: 10.11896/jsjkx.220200067

• 数据库&大数据&数据科学 • 上一篇    下一篇

随机多尺度序决策系统的最优尺度选择

方连花1, 林玉梅1, 吴伟志1,2   

  1. 1 泉州信息工程学院通识教育中心 福建 泉州 362000
    2 浙江海洋大学信息工程学院 浙江 舟山 316022
  • 收稿日期:2022-02-14 修回日期:2022-03-05 出版日期:2022-06-15 发布日期:2022-06-08
  • 通讯作者: 吴伟志(wuwz@zjou.edu.cn)
  • 基金资助:
    国家自然科学基金(61976194,62076221);福建省中青年教师教育科研项目(JAT200799);福建省职业教育教学改革研究课题(GB2020036)

Optimal Scale Selection in Random Multi-scale Ordered Decision Systems

FANG Lian-hua1, LIN Yu-mei1, WU Wei-zhi1,2   

  1. 1 General Education Center,Quanzhou University of Information Engineering,Quanzhou,Fujian 362000,China
    2 School of Information Engineering,Zhejiang Ocean University,Zhoushan,Zhejiang 316022,China
  • Received:2022-02-14 Revised:2022-03-05 Online:2022-06-15 Published:2022-06-08
  • About author:FANG Lian-hua,born in 1986,master,lecturer.Her main research interests include rough set and general topology.
    WU Wei-zhi,born in 1964,Ph.D,professor.His main research interests include rough set,granular computing,data mining and artificial intelligence.
  • Supported by:
    National Natural Science Foundation of China(61976194,62076221),Education and Scientific Research Project for Young and Middle-aged Teachers in Fujian Province(JAT200799) and Research on Teaching Reform of Vocational Education in Fujian Province(GB2020036).

摘要: 针对由随机实验得到的多尺度序信息系统的知识获取问题,首先,引入随机多尺度序信息系统和基于优势-等价关系的随机多尺度序决策系统的概念;然后,在随机多尺度序信息系统中给出在不同尺度下基于优势关系的信息粒的表示、以及集合关于由条件属性集生成的优势关系的下近似与上近似的定义,并得到在不同尺度下信息粒、集合的下近似与上近似的变化关系;最后,分别在随机多尺度序信息系统和基于优势-等价关系的随机多尺度序决策系统中定义了几类最优尺度的概念,并用证据理论中的信任函数与似然函数刻画了最优尺度的数值特征。

关键词: 粗糙集, 多尺度序信息系统, 粒计算, 信任函数, 最优尺度

Abstract: Aiming at the knowledge acquisition problem of multi-scale ordered information system obtained from random experiments,concepts of random multi-scale ordered information systems and dominance-equivalence-relations-based random multi-scale ordered decision systems are first introduced.Information granules in random multi-scale ordered information systems as well as lower and upper approximations of sets with respect to dominance relations induced by conditional attribute set under different scales are then described.Their relationships are also clarified.Finally,concepts of several types of optimal scales in random multi-scale ordered information systems and dominance-equivalence-relations-based random multi-scale ordered decision systems are defined.It is proved that belief and plausibility functions in the Dempster-Shafer theory of evidence can be used to characterize some optimal scales in random multi-scale ordered information systems and dominance-equivalence-relations-based random multi-scale ordered decision systems,respectively.

Key words: Belief functions, Granular computing, Multi-scale ordered information systems, Optimal scale, Rough sets

中图分类号: 

  • TP182
[1] ZADEH L A,GUPTA M,RAGADE R,et al.Fuzzy sets and information granularity[C]//Advances in Fuzzy Set Theory and Applications.Amsterdam:North-Holland,1979:3-18.
[2] LIN T Y.Granular computing:From rough sets and neighborhood systems to information granulation and computing in words[C]//Proceedings of European Congress on Intelligent Techniques and Soft Computing.1997.
[3] LIANG J Y,QIAN Y H,LI D Y,et al.Theory and method of granular computing for big data mining[J].Scientia Sinica Informationis,2015,45(11):1355-1369.
[4] CHEN C L P,ZHANG C Y.Data-intensive applications,challenges,techniques and technologies:A survey on Big Data[J].Information Sciences,2014,275:314-347.
[5] XU J,WANG G Y,YU H.Review of big data processing based on granular computing[J].Chinese Journal of Computers,2015,38(8):1497-1517.
[6] PAWLAK Z.Rough Sets:Theoretical Aspects of Reasoningabout Data[M].Boston:Kluwer Academic Publishers,1991.
[7] PANG J F,SONG P,LIANG J Y.Review on multi-granulation computing models and methods for decision analysis[J].Pattern Recognition and Artificial Intelligence,2021,34(12):1120-1130.
[8] LI J H,WANG F,WU W Z,et al.Review of multi-granularity data analysis methods based on granular computing[J].Journal of Data Acquisition and Processing,2021,36(3):418-435.
[9] WU W Z,LEUNG Y.Theory and applications of granular labelled partitions in multi-scale decision tables[J].Information Sciences,2011,181(18):3878-3897.
[10] LI F,HU B Q.A new approach of optimal scale selection tomulti-scale decision tables[J].Information Sciences,2017,381:193-208.
[11] WU W Z,LEUNG Y.Optimal scale selection for multi-scale decision tables[J].International Journal of Approximate Reaso-ning,2013,54(8):1107-1129.
[12] SHE Y H,LI J H,YANG H L.A local approach to rule induction in multi-scale decision tables[J].Knowledge-Based Systems,2015,89:398-410.
[13] LI F,HU B Q,WANG J.Stepwise optimal scale selection for multi-scale decision tables via attribute significance[J].Know-ledge-Based Systems,2017,129:4-16.
[14] WU W Z,CHEN C J,LI T J,et al.A comparative study on optimal granularities in inconsistent multi-granular labeled decision systems[J].Pattern Recognition and Artificial Intelligence,2016,29(12):1095-1103.
[15] WU W Z,SUN Y,WANG X,et al.Local optimal scale combination selections in inconsistent generalized multi-scale decision systems[J].Recognition and Artificial Intelligence,2021,34(8):689-700.
[16] HAO C,LI J H,FAN M,et al.Optimal scale selection in dynamic multi-scale decision tables based on sequential three-way decisions[J].Information Sciences,2017,415:213-232.
[17] HUANG Z H,LI J J,DAI W Z,et al.Generalized multi-scale decision tables with multi-scale decision attributes[J].International Journal of Approximate Reasoning,2019,115:194-208.
[18] ZHANG X Q,ZHANG Q H,CHENG Y L,et al.Optimal scale selection by integrating uncertainty and cost-sensitive learning in multi-scale decision tables[J].International Journal of Machine Learning and Cybernetics,2020,11(5):1095-1114.
[19] CHENG Y L,ZHANG Q H,WANG G Y,et al.Optimal scale selection and attribute reduction in multi-scale decision tables based on three-way decision[J].Information Sciences,2020,541:36-59.
[20] CHENG Y L,ZHANG Q H,WANG G Y.Optimal scale combination selection for multi-scale decision tables based on three-way decision[J].International Journal of Machine Learning and Cybernetics,2021,12:281-301.
[21] WU W Z,LEUNG Y.A Comparison study of optimal scale combination selection in generalized multi-scale decision tables[J].International Journal of Machine Learning and Cybernetics,2020,11(5):961-972.
[22] HUANG B,LI H X,FENG G F,et al.Double-quantitativerough sets,optimal scale selection and reduction in multi-scale dominance IF decision tables[J].International Journal of Approximate Reasoning,2021,130:170-191.
[23] ZHANG Q H,CHENG Y L,ZHAO F,et al.Optimal scale combination selection integrating three-way decision with Hasse diagram[J/OL].IEEE Transactions on Neural Networks and Learning Systems.https://ieeexplore.ieee.org/document/9364887.
[24] ZHANG Q H,ZHANG X Q,PANG G H.Cost-sensitive optimal scale combination in multi-scale decision systems[J].Control and Decision,2021,36(10):2369-2378.
[25] SHAFER G.A Mathematical Theory of Evidence[M].Princeton:Princeton University Press,1976.
[26] SKOWRON A.The rough sets theory and evidence theory[J].Fundamenta Informatica,1990,13:245-262.
[27] YAO Y Y,LINGRAS P J.Interpretations of belief functions in the theory of rough sets[J].Information Sciences,1998,104:81-106.
[28] WU W Z,LEUNG Y,ZHANG W X.Connections betweenrough set theory and Dempster-Shafer theory of evidence[J].International Journal of General Systems,2002,31:405-430.
[29] WU W Z,LEUNG Y,MI J S.On generalized fuzzy belief functions in infinite spaces[J].IEEE Transactions on Fuzzy Systems,2009,17(2):385-397.
[30] WU W Z,ZHANG M,LI H Z,et al.Knowledge reduction in random information systems via Dempster-Shafer theory of evidence[J].Information Sciences,2005,174(3/4):143-164.
[31] XU W H,ZHANG X Y,ZHONG J M,et al.Attribute reduction in ordered information systems based on evidence theory[J].Knowledge and Information Systems,2010,25(1):169-184.
[32] DU W S,HU B Q.Attribute reduction in ordered decision tables via evidence theory[J].Information Sciences,2016,364(C):91-110.
[33] WU W Z,CHEN Y,XU Y H,et al.Optimal granularity selections in consistent incomplete multi-granular labeled decision systems[J].Pattern Recognition and Artificial Intelligence,2016,29(2):108-115.
[34] WU W Z,YANG L,TAN A H,et al.Granularity Selections in Generalized Incomplete Multi-Granular Labeled Decision Systems[J].Journal of Computer Research and Development,2018,55(6):1263-1272.
[35] GRECO S,MATARAZZO B,SLOWINGSKI R.Rough approximation of a preference relation by dominance relations[J].European Journal of Operational Research,1999,117(1):63-83.
[36] GRECO S,MATARAZZO B,SLOWINSKI R.Rough sets theory for multicriteria decision analysis[J].European Journal of Operational Research,2001,129(1):1-47.
[37] XU W H.Ordered Information Systems and Rough Sets[M].Beijing:Science Press,2013.
[38] FANG L H,LI K D.Distribution Reduction in Inconsistent Information System Based on Dominance and Equivalent Relations[J].Fuzzy Systems and Mathematics,2013,27(3):182-189.
[39] ZHENG J W,WU W Z,BAO H,et al.Evidence theory based optimal scale selection for multi-scale ordered decision systems[J].International Journal of Machine Learning and Cybernetics,2021,13(4):1115-1129.
[40] ZHANG W X,LEUNG Y,WU W Z.Information Systems and Knowledge Discovery[M].Beijing:Science Press,2003.
[1] 程富豪, 徐泰华, 陈建军, 宋晶晶, 杨习贝.
基于顶点粒k步搜索和粗糙集的强连通分量挖掘算法
Strongly Connected Components Mining Algorithm Based on k-step Search of Vertex Granule and Rough Set Theory
计算机科学, 2022, 49(8): 97-107. https://doi.org/10.11896/jsjkx.210700202
[2] 许思雨, 秦克云.
基于剩余格的模糊粗糙集的拓扑性质
Topological Properties of Fuzzy Rough Sets Based on Residuated Lattices
计算机科学, 2022, 49(6A): 140-143. https://doi.org/10.11896/jsjkx.210200123
[3] 陈于思, 艾志华, 张清华.
基于三角不等式判定和局部策略的高效邻域覆盖模型
Efficient Neighborhood Covering Model Based on Triangle Inequality Checkand Local Strategy
计算机科学, 2022, 49(5): 152-158. https://doi.org/10.11896/jsjkx.210300302
[4] 孙林, 黄苗苗, 徐久成.
基于邻域粗糙集和Relief的弱标记特征选择方法
Weak Label Feature Selection Method Based on Neighborhood Rough Sets and Relief
计算机科学, 2022, 49(4): 152-160. https://doi.org/10.11896/jsjkx.210300094
[5] 王子茵, 李磊军, 米据生, 李美争, 解滨.
基于误分代价的变精度模糊粗糙集属性约简
Attribute Reduction of Variable Precision Fuzzy Rough Set Based on Misclassification Cost
计算机科学, 2022, 49(4): 161-167. https://doi.org/10.11896/jsjkx.210500211
[6] 王志成, 高灿, 邢金明.
一种基于正域的三支近似约简
Three-way Approximate Reduction Based on Positive Region
计算机科学, 2022, 49(4): 168-173. https://doi.org/10.11896/jsjkx.210500067
[7] 薛占熬, 侯昊东, 孙冰心, 姚守倩.
带标记的不完备双论域模糊概率粗糙集中近似集动态更新方法
Label-based Approach for Dynamic Updating Approximations in Incomplete Fuzzy Probabilistic Rough Sets over Two Universes
计算机科学, 2022, 49(3): 255-262. https://doi.org/10.11896/jsjkx.201200042
[8] 李艳, 范斌, 郭劼, 林梓源, 赵曌.
基于k-原型聚类和粗糙集的属性约简方法
Attribute Reduction Method Based on k-prototypes Clustering and Rough Sets
计算机科学, 2021, 48(6A): 342-348. https://doi.org/10.11896/jsjkx.201000053
[9] 温馨, 闫心怡, 陈泽华.
基于等价关系的最小乐观概念格生成算法
Minimal Optimistic Concept Generation Algorithm Based on Equivalent Relations
计算机科学, 2021, 48(3): 163-167. https://doi.org/10.11896/jsjkx.200100046
[10] 薛占熬, 孙冰心, 侯昊东, 荆萌萌.
基于多粒度粗糙直觉犹豫模糊集的最优粒度选择方法
Optimal Granulation Selection Method Based on Multi-granulation Rough Intuitionistic Hesitant Fuzzy Sets
计算机科学, 2021, 48(10): 98-106. https://doi.org/10.11896/jsjkx.200800074
[11] 薛占熬, 张敏, 赵丽平, 李永祥.
集对优势关系下多粒度决策粗糙集的可变三支决策模型
Variable Three-way Decision Model of Multi-granulation Decision Rough Sets Under Set-pair Dominance Relation
计算机科学, 2021, 48(1): 157-166. https://doi.org/10.11896/jsjkx.191200175
[12] 桑彬彬, 杨留中, 陈红梅, 王生武.
优势关系粗糙集增量属性约简算法
Incremental Attribute Reduction Algorithm in Dominance-based Rough Set
计算机科学, 2020, 47(8): 137-143. https://doi.org/10.11896/jsjkx.190700188
[13] 陈玉金, 徐吉辉, 史佳辉, 刘宇.
基于直觉犹豫模糊集的三支决策模型及其应用
Three-way Decision Models Based on Intuitionistic Hesitant Fuzzy Sets and Its Applications
计算机科学, 2020, 47(8): 144-150. https://doi.org/10.11896/jsjkx.190800041
[14] 周俊丽, 管延勇, 徐法升, 王洪凯.
覆盖近似空间中的核及其性质
Core in Covering Approximation Space and Its Properties
计算机科学, 2020, 47(6A): 526-529. https://doi.org/10.11896/JsJkx.190600003
[15] 张琴, 陈红梅, 封云飞.
一种基于粗糙集和密度峰值的重叠社区发现方法
Overlapping Community Detection Method Based on Rough Sets and Density Peaks
计算机科学, 2020, 47(5): 72-78. https://doi.org/10.11896/jsjkx.190400160
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!