计算机科学 ›› 2022, Vol. 49 ›› Issue (4): 312-320.doi: 10.11896/jsjkx.210800027
彭冬阳, 王睿, 胡谷雨, 祖家琛, 王田丰
PENG Dong-yang, WANG Rui, HU Gu-yu, ZU Jia-chen, WANG Tian-feng
摘要: 随着无线网络中视频流量的增长,内容分发网络和移动边缘计算技术被视为应对这一挑战的有效方案,其中缓存策略问题是研究的重要内容。面对不同的应用场景和需求,设计缓存策略时会考虑不同的优化目标。文中重点考虑了两个优化目标的公平性问题。对视频服务商而言,用户满意度(Quality of Experience,QoE)体现了服务的质量,而能量效率体现了成本效益和节能指标。在设计缓存策略时,由于无法明确哪个目标的优先级更高,因此需要对它们进行公平地优化。首先,对缓存策略问题的两个重要目标(QoE和能量效率)进行数学建模,并提出了公平性原则。然后,将这两个优化目标作为博弈对象,代入纳什议价博弈模型中。接着,提出了一种确保公平性的多回合议价算法,并证明了该算法的合理性和有效性。最后,仿真实验验证,该算法能够在优化缓存策略的QoE和能量效率的同时保证它们之间的公平性。
中图分类号:
[1] Cisco visual networking index:Forecast and trends,2017-2022white paper[EB/OL]. [2021-07-20].https://www.cisco.com/c/en/us/soluti-ons/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html. [2] ZHOU Y,CHEN L,YANG C,et al.Video popularity dynamics and its implication for replication[J].IEEE Transactions on Multimedia,2015,17(8):1273-1285. [3] VAKALI A,PALLIS G.Content delivery networks:status and trends[J].IEEE Internet Computing,2003,7(6):68-74. [4] MAO Y,YOU C,ZHANG J,et al.A survey on mobile edge computing:The communication perspective[J].IEEE Communications Surveys Tutorials,2017,19(4):2322-2358. [5] SANI Y,MAUTHE A,EDWARDS C.Adaptive bitrate selec-tion:A survey[J].IEEE Communications Surveys Tutorials,2017,19(4):2985-3014. [6] SEUFERT M,EGGER S,SLANINA M,et al.A survey onquality of experience of http adaptive streaming[J].IEEE Communications Surveys Tutorials,2015,17(1):469-492. [7] ITO S M,BEZERRA D,FERNANDES S,et al.A fine-tuned control-theoretic approach for dynamic adaptive streaming over HTTP[C]//IEEE Symposium on Computers and Communication.2015:301-308. [8] ZHANG Z,LUNG C,ST-HILAIRE M,et al.An sdn-based ca-ching decision policy for video caching in information-centric networking[J].IEEE Transactions on Multimedia,2020,22(4):1069-1083. [9] CHEN Y,ZHANG S,XU S,et al.Fundamental trade-offs on green wireless networks[J].IEEE Communications Magazine,2011,49(6):30-37. [10] BOSSEN F,BROSS B,SUHRING K,et al.Hevc complexity and implementation analysis[J].IEEE Transactions on Circuits and Systems for Video Technology,2012,22(12):1685-1696. [11] YAN H,LIU J,LI Y,et al.Spatial popularity and similarity of watching videos in large-scale urban environment[J].IEEE Transactions on Network and Service Management,2018,15(2):797-810. [12] POULARAKIS K,IOSIFIDIS G,ARGYRIOU A,et al.Caching and operator cooperation policies for layered video content deli-very[C]//The 35th Annual IEEE International Conference on Computer Communications.2016:1-9. [13] WEI Y,YU R F,SONG M,et al.Joint optimization of caching,computing,and radio resources for fog-enabled IoT using natural actor-critic deep reinforcement learning[J].IEEE Internet of Things Journal,2019,6(2):2061-2073. [14] MEHRABI A,SIEKKINEN M,YLÄ-JÄÄSKI A.Energy-aware qoe and backhaul traffic optimization in green edge adaptive mobile video streaming[J].IEEE Transactions on Green Communications and Networking,2019,3(3):828-839. [15] LI C,LIU J,OUYANG S.Analysis and prediction of content popularity for online video service:a youku case study[J].China Communications,2016,13(12):216-233. [16] SU B,WANG Y,LIU Y.A new popularity prediction model based on lifetime forecast of online videos[C]//IEEE International Conference on Network Infrastructure and Digital Content.2016:376-380. [17] TRAN X T,POMPILI D.Adaptive bitrate video caching and processing in mobile-edge computing networks[J].IEEE Transactions on Mobile Computing,2019,18(9):1965-1978. [18] TRAN A,DAO N,CHO S.Bitrate adaptation for video strea-ming services in edge caching systems[J].IEEE Access,2020,8:135844-135852. [19] KONG Q,MAO W,CHEN G,et al.Exploring trends and patterns of popularity stage evolution in social media[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2020,50(10):3817-3827. [20] SHANMUGAM K,GOLREZAEI N,DIMAKIS G A,et al.Femtocaching:Wireless content delivery through distributed caching helpers[J].IEEE Transactions on Information Theory,2013,59(12):8402-8413. [21] HAN S,SU H,YANG C,et al.Proactive edge caching for video on demand with quality adaptation[J].IEEE Transactions on Wireless Communications,2020,19(1):218-234. [22] CHEN T,DONG B,CHEN Y,et al.Multi-objective learning for efficient content caching for mobile edge networks[C]//International Conference on Computing,Networking and Communications.2020:543-547. [23] ZHANG P,WANG X,MA Z,et al.Joint optimization of satisfaction index and spectrum efficiency with cache restricted for resource allocation in multi-beam satellite systems[J].China Communications,2019,16(2):189-201. [24] SHE C,YANG C.Energy efficiency and delay in wireless systems:Is their relation always a tradeoff?[J].IEEE Transactions on Wireless Communications,2016,15(11):7215-7228. [25] ZHONG Y,GE X,HAN T,et al.Tradeoff between delay and physical layer security in wireless networks[J].IEEE Journal on Selected Areas in Communications,2018,36(7):1635-1647. [26] ZHENG T X,WANG H M,YUAN J.Secure and energy-efficient transmissions in cache-enabled heterogeneous cellular networks:Performance analysis and optimization[J].IEEE Tran-sactions on Communications,2018,66(11):5554-5567. [27] ZHAO H,WANG Q,WANG J,et al.Popularity-based and version-aware caching scheme at edge servers for multi-version vod systems[J].IEEE Transactions on Circuits and Systems for Video Technology,2021,31(3):1234-1248. [28] ALISHAH D S,ZHAO P H,KIM H.A dynamic cache replacement and proportional fair scheduling algorithm in fog radio access networks[C]//TENCON 2018-2018 IEEE Region 10 Conference.2018:1197-1201. [29] ZHANG Z,MA H,XUE Y,et al.Fair video caching for named data networking[C]//IEEE International Conference on Communications.2017:1-6. [30] YAICHE H,MAZUMDAR R,ROSENBERG C.A game theoretic framework for bandwidth allocation and pricing in broadband networks[J].IEEE/ACM Transactions on Networking,2000,8(5):667-678. [31] REICHL P,SCHATZ R,TUFFIN B.Logarithmic Laws inService Quality Perception:Where Microeconomics Meets Psychophysics and Quality of Experience[J].Telecommunication Systems,2013,52(2):587-600. [32] LI L,SHI D,HOU R,et al.Energy-efficient proactive caching for adaptive video streaming via data-driven optimization[J].IEEE Internet of Things Journal,2020,7(6):5549-5561. [33] CHERKASOVA L,GUPTA M.Analysis of enterprise mediaserver workloads:access patterns,locality,content evolution,and rates of change[J].IEEE/ACM Transactions on Networking,2004,12(5):781-794. [34] RADUNOVIC B,LE BOUDEC J Y.A unified framework for max-min and min-max fairness with applications[J].IEEE/ACM Transactions on Networking,2007,15(5):1073-1083. [35] NASH J F.The bargaining problem[J].Econometrica,1950,18(2):155-162. [36] ZHAO Y,WANG S,XU S,et al,Load balance vs energy efficiency in traffic engineering:A game Theoretical Perspective[C]//2013 Proceedings IEEE INFOCOM.2013:530-534. |
[1] | 于滨, 李学华, 潘春雨, 李娜. 基于深度强化学习的边云协同资源分配算法 Edge-Cloud Collaborative Resource Allocation Algorithm Based on Deep Reinforcement Learning 计算机科学, 2022, 49(7): 248-253. https://doi.org/10.11896/jsjkx.210400219 |
[2] | 李梦菲, 毛莺池, 屠子健, 王瑄, 徐淑芳. 基于深度确定性策略梯度的服务器可靠性任务卸载策略 Server-reliability Task Offloading Strategy Based on Deep Deterministic Policy Gradient 计算机科学, 2022, 49(7): 271-279. https://doi.org/10.11896/jsjkx.210600040 |
[3] | 卫宏儒, 李思月, 郭涌浩. 基于智能合约的秘密重建协议 Secret Reconstruction Protocol Based on Smart Contract 计算机科学, 2022, 49(6A): 469-473. https://doi.org/10.11896/jsjkx.210700033 |
[4] | 方韬, 杨旸, 陈佳馨. D2D辅助移动边缘计算下的卸载策略优化 Optimization of Offloading Decisions in D2D-assisted MEC Networks 计算机科学, 2022, 49(6A): 601-605. https://doi.org/10.11896/jsjkx.210200114 |
[5] | 刘漳辉, 郑鸿强, 张建山, 陈哲毅. 多无人机使能移动边缘计算系统中的计算卸载与部署优化 Computation Offloading and Deployment Optimization in Multi-UAV-Enabled Mobile Edge Computing Systems 计算机科学, 2022, 49(6A): 619-627. https://doi.org/10.11896/jsjkx.210600165 |
[6] | 谢万城, 李斌, 代玥玥. 空中智能反射面辅助边缘计算中基于PPO的任务卸载方案 PPO Based Task Offloading Scheme in Aerial Reconfigurable Intelligent Surface-assisted Edge Computing 计算机科学, 2022, 49(6): 3-11. https://doi.org/10.11896/jsjkx.220100249 |
[7] | 周天清, 岳亚莉. 超密集物联网络中多任务多步计算卸载算法研究 Multi-Task and Multi-Step Computation Offloading in Ultra-dense IoT Networks 计算机科学, 2022, 49(6): 12-18. https://doi.org/10.11896/jsjkx.211200147 |
[8] | 孙刚, 伍江江, 陈浩, 李军, 徐仕远. 一种基于切比雪夫距离的隐式偏好多目标进化算法 Hidden Preference-based Multi-objective Evolutionary Algorithm Based on Chebyshev Distance 计算机科学, 2022, 49(6): 297-304. https://doi.org/10.11896/jsjkx.210500095 |
[9] | 李浩东, 胡洁, 范勤勤. 基于并行分区搜索的多模态多目标优化及其应用 Multimodal Multi-objective Optimization Based on Parallel Zoning Search and Its Application 计算机科学, 2022, 49(5): 212-220. https://doi.org/10.11896/jsjkx.210300019 |
[10] | 张海波, 张益峰, 刘开健. 基于NOMA-MEC的车联网任务卸载、迁移与缓存策略 Task Offloading,Migration and Caching Strategy in Internet of Vehicles Based on NOMA-MEC 计算机科学, 2022, 49(2): 304-311. https://doi.org/10.11896/jsjkx.210100157 |
[11] | 梁俊斌, 张海涵, 蒋婵, 王天舒. 移动边缘计算中基于深度强化学习的任务卸载研究进展 Research Progress of Task Offloading Based on Deep Reinforcement Learning in Mobile Edge Computing 计算机科学, 2021, 48(7): 316-323. https://doi.org/10.11896/jsjkx.200800095 |
[12] | 宋海宁, 焦健, 刘永. 高速公路中的移动边缘计算研究 Research on Mobile Edge Computing in Expressway 计算机科学, 2021, 48(6A): 383-386. https://doi.org/10.11896/jsjkx.200900212 |
[13] | 范艳芳, 袁爽, 蔡英, 陈若愚. 车载边缘计算中基于深度强化学习的协同计算卸载方案 Deep Reinforcement Learning-based Collaborative Computation Offloading Scheme in VehicularEdge Computing 计算机科学, 2021, 48(5): 270-276. https://doi.org/10.11896/jsjkx.201000005 |
[14] | 李振江, 张幸林. 减少核心网拥塞的边缘计算资源分配和卸载决策 Resource Allocation and Offloading Decision of Edge Computing for Reducing Core Network Congestion 计算机科学, 2021, 48(3): 281-288. https://doi.org/10.11896/jsjkx.200700025 |
[15] | 王珂, 曲桦, 赵季红. 多域SFC部署中基于强化学习的多目标优化方法 Multi-objective Optimization Method Based on Reinforcement Learning in Multi-domain SFC Deployment 计算机科学, 2021, 48(12): 324-330. https://doi.org/10.11896/jsjkx.201100159 |
|