视频缓存策略中QoE和能量效率的公平联合优化

计算机科学 ›› 2022, Vol. 49 ›› Issue (4): 312-320.doi: 10.11896/jsjkx.210800027

• 计算机网络 • 上一篇    下一篇

视频缓存策略中QoE和能量效率的公平联合优化

彭冬阳, 王睿, 胡谷雨, 祖家琛, 王田丰   

  1. 中国人民解放军陆军工程大学 南京 210000
  • 收稿日期:2021-08-03 修回日期:2021-12-08 发布日期:2022-04-01
  • 通讯作者: 胡谷雨(huguyu@189.cn)
  • 作者简介:(pengdongyoung@163.com)
  • 基金资助:
    国家自然科学基金(62076251)

Fair Joint Optimization of QoE and Energy Efficiency in Caching Strategy for Videos

PENG Dong-yang, WANG Rui, HU Gu-yu, ZU Jia-chen, WANG Tian-feng   

  1. Army Engineering University of PLA, Nanjing 210000, China
  • Received:2021-08-03 Revised:2021-12-08 Published:2022-04-01
  • About author:PENG Dong-yang,born in 1996,postgraduate.His main research interests include integrated application of big data and network management.HU Gu-yu,born in 1963,Ph.D,professor.His main research interests include network management and network intelligence.
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(62076251).

摘要: 随着无线网络中视频流量的增长,内容分发网络和移动边缘计算技术被视为应对这一挑战的有效方案,其中缓存策略问题是研究的重要内容。面对不同的应用场景和需求,设计缓存策略时会考虑不同的优化目标。文中重点考虑了两个优化目标的公平性问题。对视频服务商而言,用户满意度(Quality of Experience,QoE)体现了服务的质量,而能量效率体现了成本效益和节能指标。在设计缓存策略时,由于无法明确哪个目标的优先级更高,因此需要对它们进行公平地优化。首先,对缓存策略问题的两个重要目标(QoE和能量效率)进行数学建模,并提出了公平性原则。然后,将这两个优化目标作为博弈对象,代入纳什议价博弈模型中。接着,提出了一种确保公平性的多回合议价算法,并证明了该算法的合理性和有效性。最后,仿真实验验证,该算法能够在优化缓存策略的QoE和能量效率的同时保证它们之间的公平性。

关键词: 多目标优化, 公平性, 缓存策略, 流媒体视频, 纳什议价博弈, 移动边缘计算

Abstract: With the increase in video traffic on wireless networks, content delivery networks and mobile edge computing are considered effective solutions to this problem, whereas caching strategy problem is an important issue of research.When facing different application scenarios and requirements, caching strategies are designed with different objectives.This study focuses on the fairness problem among different optimization objectives.For video service providers, the quality of experience (QoE) reflects the service performance, and energy efficiency reflects the cost-effectiveness and green energy-saving indicators.When designing a caching strategy, it is difficult to specify the objective with higher priority.Therefore, they need to be fairly optimized.First, the two important optimization objectives in the caching strategy problem(QoE and energy efficiency) are mathematically modeled, and the principle of fairness is proposed.Second, these two optimization objectives are innovatively consider as game players and are substituted into the Nash bargaining game model.Third, a multi-round bargaining algorithm is novelly proposed to ensure fairness, and the rationality and effectiveness of the proposed algorithm are rigorously proved.Finally, simulation experiments demonstrate that the proposed algorithm can optimize the QoE and energy efficiency of caching strategies while maintaining a ba-lance between them.

Key words: Caching strategy, Fairness, MEC, Multi-objective optimization, Nash bargaining game, Video streaming

中图分类号: 

  • TP393
[1] Cisco visual networking index:Forecast and trends,2017-2022white paper[EB/OL].
[2021-07-20].https://www.cisco.com/c/en/us/soluti-ons/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html.
[2] ZHOU Y,CHEN L,YANG C,et al.Video popularity dynamics and its implication for replication[J].IEEE Transactions on Multimedia,2015,17(8):1273-1285.
[3] VAKALI A,PALLIS G.Content delivery networks:status and trends[J].IEEE Internet Computing,2003,7(6):68-74.
[4] MAO Y,YOU C,ZHANG J,et al.A survey on mobile edge computing:The communication perspective[J].IEEE Communications Surveys Tutorials,2017,19(4):2322-2358.
[5] SANI Y,MAUTHE A,EDWARDS C.Adaptive bitrate selec-tion:A survey[J].IEEE Communications Surveys Tutorials,2017,19(4):2985-3014.
[6] SEUFERT M,EGGER S,SLANINA M,et al.A survey onquality of experience of http adaptive streaming[J].IEEE Communications Surveys Tutorials,2015,17(1):469-492.
[7] ITO S M,BEZERRA D,FERNANDES S,et al.A fine-tuned control-theoretic approach for dynamic adaptive streaming over HTTP[C]//IEEE Symposium on Computers and Communication.2015:301-308.
[8] ZHANG Z,LUNG C,ST-HILAIRE M,et al.An sdn-based ca-ching decision policy for video caching in information-centric networking[J].IEEE Transactions on Multimedia,2020,22(4):1069-1083.
[9] CHEN Y,ZHANG S,XU S,et al.Fundamental trade-offs on green wireless networks[J].IEEE Communications Magazine,2011,49(6):30-37.
[10] BOSSEN F,BROSS B,SUHRING K,et al.Hevc complexity and implementation analysis[J].IEEE Transactions on Circuits and Systems for Video Technology,2012,22(12):1685-1696.
[11] YAN H,LIU J,LI Y,et al.Spatial popularity and similarity of watching videos in large-scale urban environment[J].IEEE Transactions on Network and Service Management,2018,15(2):797-810.
[12] POULARAKIS K,IOSIFIDIS G,ARGYRIOU A,et al.Caching and operator cooperation policies for layered video content deli-very[C]//The 35th Annual IEEE International Conference on Computer Communications.2016:1-9.
[13] WEI Y,YU R F,SONG M,et al.Joint optimization of caching,computing,and radio resources for fog-enabled IoT using natural actor-critic deep reinforcement learning[J].IEEE Internet of Things Journal,2019,6(2):2061-2073.
[14] MEHRABI A,SIEKKINEN M,YLÄ-JÄÄSKI A.Energy-aware qoe and backhaul traffic optimization in green edge adaptive mobile video streaming[J].IEEE Transactions on Green Communications and Networking,2019,3(3):828-839.
[15] LI C,LIU J,OUYANG S.Analysis and prediction of content popularity for online video service:a youku case study[J].China Communications,2016,13(12):216-233.
[16] SU B,WANG Y,LIU Y.A new popularity prediction model based on lifetime forecast of online videos[C]//IEEE International Conference on Network Infrastructure and Digital Content.2016:376-380.
[17] TRAN X T,POMPILI D.Adaptive bitrate video caching and processing in mobile-edge computing networks[J].IEEE Transactions on Mobile Computing,2019,18(9):1965-1978.
[18] TRAN A,DAO N,CHO S.Bitrate adaptation for video strea-ming services in edge caching systems[J].IEEE Access,2020,8:135844-135852.
[19] KONG Q,MAO W,CHEN G,et al.Exploring trends and patterns of popularity stage evolution in social media[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2020,50(10):3817-3827.
[20] SHANMUGAM K,GOLREZAEI N,DIMAKIS G A,et al.Femtocaching:Wireless content delivery through distributed caching helpers[J].IEEE Transactions on Information Theory,2013,59(12):8402-8413.
[21] HAN S,SU H,YANG C,et al.Proactive edge caching for video on demand with quality adaptation[J].IEEE Transactions on Wireless Communications,2020,19(1):218-234.
[22] CHEN T,DONG B,CHEN Y,et al.Multi-objective learning for efficient content caching for mobile edge networks[C]//International Conference on Computing,Networking and Communications.2020:543-547.
[23] ZHANG P,WANG X,MA Z,et al.Joint optimization of satisfaction index and spectrum efficiency with cache restricted for resource allocation in multi-beam satellite systems[J].China Communications,2019,16(2):189-201.
[24] SHE C,YANG C.Energy efficiency and delay in wireless systems:Is their relation always a tradeoff?[J].IEEE Transactions on Wireless Communications,2016,15(11):7215-7228.
[25] ZHONG Y,GE X,HAN T,et al.Tradeoff between delay and physical layer security in wireless networks[J].IEEE Journal on Selected Areas in Communications,2018,36(7):1635-1647.
[26] ZHENG T X,WANG H M,YUAN J.Secure and energy-efficient transmissions in cache-enabled heterogeneous cellular networks:Performance analysis and optimization[J].IEEE Tran-sactions on Communications,2018,66(11):5554-5567.
[27] ZHAO H,WANG Q,WANG J,et al.Popularity-based and version-aware caching scheme at edge servers for multi-version vod systems[J].IEEE Transactions on Circuits and Systems for Video Technology,2021,31(3):1234-1248.
[28] ALISHAH D S,ZHAO P H,KIM H.A dynamic cache replacement and proportional fair scheduling algorithm in fog radio access networks[C]//TENCON 2018-2018 IEEE Region 10 Conference.2018:1197-1201.
[29] ZHANG Z,MA H,XUE Y,et al.Fair video caching for named data networking[C]//IEEE International Conference on Communications.2017:1-6.
[30] YAICHE H,MAZUMDAR R,ROSENBERG C.A game theoretic framework for bandwidth allocation and pricing in broadband networks[J].IEEE/ACM Transactions on Networking,2000,8(5):667-678.
[31] REICHL P,SCHATZ R,TUFFIN B.Logarithmic Laws inService Quality Perception:Where Microeconomics Meets Psychophysics and Quality of Experience[J].Telecommunication Systems,2013,52(2):587-600.
[32] LI L,SHI D,HOU R,et al.Energy-efficient proactive caching for adaptive video streaming via data-driven optimization[J].IEEE Internet of Things Journal,2020,7(6):5549-5561.
[33] CHERKASOVA L,GUPTA M.Analysis of enterprise mediaserver workloads:access patterns,locality,content evolution,and rates of change[J].IEEE/ACM Transactions on Networking,2004,12(5):781-794.
[34] RADUNOVIC B,LE BOUDEC J Y.A unified framework for max-min and min-max fairness with applications[J].IEEE/ACM Transactions on Networking,2007,15(5):1073-1083.
[35] NASH J F.The bargaining problem[J].Econometrica,1950,18(2):155-162.
[36] ZHAO Y,WANG S,XU S,et al,Load balance vs energy efficiency in traffic engineering:A game Theoretical Perspective[C]//2013 Proceedings IEEE INFOCOM.2013:530-534.
[1] 于滨, 李学华, 潘春雨, 李娜.
基于深度强化学习的边云协同资源分配算法
Edge-Cloud Collaborative Resource Allocation Algorithm Based on Deep Reinforcement Learning
计算机科学, 2022, 49(7): 248-253. https://doi.org/10.11896/jsjkx.210400219
[2] 李梦菲, 毛莺池, 屠子健, 王瑄, 徐淑芳.
基于深度确定性策略梯度的服务器可靠性任务卸载策略
Server-reliability Task Offloading Strategy Based on Deep Deterministic Policy Gradient
计算机科学, 2022, 49(7): 271-279. https://doi.org/10.11896/jsjkx.210600040
[3] 卫宏儒, 李思月, 郭涌浩.
基于智能合约的秘密重建协议
Secret Reconstruction Protocol Based on Smart Contract
计算机科学, 2022, 49(6A): 469-473. https://doi.org/10.11896/jsjkx.210700033
[4] 方韬, 杨旸, 陈佳馨.
D2D辅助移动边缘计算下的卸载策略优化
Optimization of Offloading Decisions in D2D-assisted MEC Networks
计算机科学, 2022, 49(6A): 601-605. https://doi.org/10.11896/jsjkx.210200114
[5] 刘漳辉, 郑鸿强, 张建山, 陈哲毅.
多无人机使能移动边缘计算系统中的计算卸载与部署优化
Computation Offloading and Deployment Optimization in Multi-UAV-Enabled Mobile Edge Computing Systems
计算机科学, 2022, 49(6A): 619-627. https://doi.org/10.11896/jsjkx.210600165
[6] 谢万城, 李斌, 代玥玥.
空中智能反射面辅助边缘计算中基于PPO的任务卸载方案
PPO Based Task Offloading Scheme in Aerial Reconfigurable Intelligent Surface-assisted Edge Computing
计算机科学, 2022, 49(6): 3-11. https://doi.org/10.11896/jsjkx.220100249
[7] 周天清, 岳亚莉.
超密集物联网络中多任务多步计算卸载算法研究
Multi-Task and Multi-Step Computation Offloading in Ultra-dense IoT Networks
计算机科学, 2022, 49(6): 12-18. https://doi.org/10.11896/jsjkx.211200147
[8] 孙刚, 伍江江, 陈浩, 李军, 徐仕远.
一种基于切比雪夫距离的隐式偏好多目标进化算法
Hidden Preference-based Multi-objective Evolutionary Algorithm Based on Chebyshev Distance
计算机科学, 2022, 49(6): 297-304. https://doi.org/10.11896/jsjkx.210500095
[9] 李浩东, 胡洁, 范勤勤.
基于并行分区搜索的多模态多目标优化及其应用
Multimodal Multi-objective Optimization Based on Parallel Zoning Search and Its Application
计算机科学, 2022, 49(5): 212-220. https://doi.org/10.11896/jsjkx.210300019
[10] 张海波, 张益峰, 刘开健.
基于NOMA-MEC的车联网任务卸载、迁移与缓存策略
Task Offloading,Migration and Caching Strategy in Internet of Vehicles Based on NOMA-MEC
计算机科学, 2022, 49(2): 304-311. https://doi.org/10.11896/jsjkx.210100157
[11] 梁俊斌, 张海涵, 蒋婵, 王天舒.
移动边缘计算中基于深度强化学习的任务卸载研究进展
Research Progress of Task Offloading Based on Deep Reinforcement Learning in Mobile Edge Computing
计算机科学, 2021, 48(7): 316-323. https://doi.org/10.11896/jsjkx.200800095
[12] 宋海宁, 焦健, 刘永.
高速公路中的移动边缘计算研究
Research on Mobile Edge Computing in Expressway
计算机科学, 2021, 48(6A): 383-386. https://doi.org/10.11896/jsjkx.200900212
[13] 范艳芳, 袁爽, 蔡英, 陈若愚.
车载边缘计算中基于深度强化学习的协同计算卸载方案
Deep Reinforcement Learning-based Collaborative Computation Offloading Scheme in VehicularEdge Computing
计算机科学, 2021, 48(5): 270-276. https://doi.org/10.11896/jsjkx.201000005
[14] 李振江, 张幸林.
减少核心网拥塞的边缘计算资源分配和卸载决策
Resource Allocation and Offloading Decision of Edge Computing for Reducing Core Network Congestion
计算机科学, 2021, 48(3): 281-288. https://doi.org/10.11896/jsjkx.200700025
[15] 王珂, 曲桦, 赵季红.
多域SFC部署中基于强化学习的多目标优化方法
Multi-objective Optimization Method Based on Reinforcement Learning in Multi-domain SFC Deployment
计算机科学, 2021, 48(12): 324-330. https://doi.org/10.11896/jsjkx.201100159
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!