计算机科学 ›› 2022, Vol. 49 ›› Issue (2): 279-284.doi: 10.11896/jsjkx.201200062
所属专题: 自然语言处理 虚拟专题
张虎, 柏萍
ZHANG Hu, BAI Ping
摘要: 随着图神经网络技术在自然语言处理领域中的广泛应用,基于图神经网络的文本分类研究受到了越来越多的关注,文本构图是图神经网络应用到文本分类中的一项重要研究任务,已有方法在构图时通常不能有效捕获句子中远距离词语的依赖关系。短文本分类是待分类文本中普遍较短的一类特殊文本分类任务,传统的文本表示通常比较稀疏且缺乏丰富的语义信息。基于此,文中提出了一种融入远距离词语依赖关系进行构图的图卷积短文本分类方法。首先结合词语共现关系、文档和词语之间的包含关系、远距离词语依赖关系为整个文本语料库构建一个文本图;然后将文本图输入到图卷积神经网络,通过2层卷积后,对每个文档节点进行类别预测。在on_line_shopping_10_cats、中文论文摘要和酒店评论3个数据集上的实验结果表明,所提方法相比已有基线模型取得了更好的效果。
中图分类号:
[1]KIM Y.Convolutional Neural Networks for Sentence Classifica-tion[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP).2014:1746-1751. [2]ZHOU C,SUN C,LIU Z,et al.A C-LSTM Neural Network forText Classification[J].Computerence,2015,1(4):39-44. [3]WANG Y,HUANG M,ZHU X,et al.Attention-based LSTMfor Aspect-level Sentiment Classification[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing.2016:606-615. [4]ZHOU J,CUI G,ZHANG Z,et al.Graph neural networks:Areview of methods and applications[J].arXiv:1812.08434,2018. [5]KIPF T N,WELLING M.Semi-supervised classification withgraph convolutional networks[J].arXiv:1609.02907,2016. [6]HAMILTON W,YING Z,LESKOVEC J.Inductive representation learning on large graphs[C]//Advances in Neural Information Processing Systems.2017:1024-1034. [7]CHEN J,MA T,XIAO C.FastGCN:Fast Learning with Graph Convolutional Networks via Importance Sampling[C]//International Conference on Learning Representations.2018. [8]DEFFERRARD M,BRESSON X,VANDERGHEYNST P.Convolutional neural networks on graphs with fast localized spectral filtering[C]//Advances in Neural Information Processing Systems.2016:3844-3852. [9]ZHANG Y,LIU Q,SONG L.Sentence-State LSTM for Text Representation[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1:Long Papers).2018:317-327. [10]WANG Y,HE Y M,CHEN H X,et al.RHS-CNN:A CNN Text Classification Model Based on Regularized Hierarchical Softmax[J].Journal of Chongqing University of Technology( Natural Science),2020,34( 5):187-195. [11]BLEI D M,NG A Y,JORDAN M I.Latent dirichlet allocation[J].Journal of Machine Learning Research,2003,3:993-1022. [12]JOACHIMS T.Text categorization with support vector ma-chines:Learning with many relevant features[C]//European Conference on Machine Learning.Berlin:Springer,1998:137-142. [13]WANG X,CHEN R,JIA Y,et al.Short text classification using wikipedia concept based document representation[C]//2013 International Conference on Information Technology and Applications.IEEE,2013:471-474. [14]MCCALLUM A,NIGAM K.A comparison of event models for naive bayes text classification[C]//AAAI-98 Workshop on Learning for Text Categorization.1998:41-48. [15]PHAN X H,NGUYEN L M,HORIGUCHI S.Learning to classify short and sparse text & web with hidden topics from large-scale data collections[C]//Proceedings of the 17th International Conference on World Wide Web.2008:91-100. [16]ZHANG X,ZHAO J,LECUN Y.Character-level convolutional networks for text classification[C]//Advances in Neural Information Processing Systems.2015:649-657. [17]WANG P,XU B,XU J,et al.Semantic expansion using word embedding clustering and convolutional neural network for improving short text classification[J].Neurocomputing,2016,174:806-814. [18]YAO L,MAO C,LUO Y.Graph convolutional networks fortext classification[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019,33:7370-7377. [19]HUANG L,MA D,LI S,et al.Text Level Graph NeuralNetwork for Text Classification[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Proces-sing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP).2019:3435-3441. [20]HU L M,YANG T C,SHI C,et al.Heterogeneous graph attention networks for semi-supervised short text classification[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP).2019:4823-4832. [21]CHE W X,LI Z H,LIU T.Ltp:A chinese language technology platform[C]//Coling 2010:Demonstrations.2010:13-16. [22]YUAN L C.A statistical model of syntactic analysis based ondependence relations[J].Journal of Central South University:Natural Science Edition,2009(6):1630-1635. [23]HAO M,XU B,LIANG J Y,et al.Chinese Short Text Classification with Mutual-Attention Convolutional Neural Networks[J].ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP),2020,19(5):1-13. [24]WU X H,CHEN L,WEI T T,et al.Sentiment analysis of Chinese short text based on Self-Attention and Bi-LSTM[J].Journal of Chinese Information Processing,2019,33(6):100-107. [25]DEFFERRARD M,BRESSON X,VANDERGHEYNST P.Convolutional neural networks on graphs with fast localized spectral filtering[J].Advances in Neural Information Processing Systems,2016,29:3844-3852. |
[1] | 檀莹莹, 王俊丽, 张超波. 基于图卷积神经网络的文本分类方法研究综述 Review of Text Classification Methods Based on Graph Convolutional Network 计算机科学, 2022, 49(8): 205-216. https://doi.org/10.11896/jsjkx.210800064 |
[2] | 闫佳丹, 贾彩燕. 基于双图神经网络信息融合的文本分类方法 Text Classification Method Based on Information Fusion of Dual-graph Neural Network 计算机科学, 2022, 49(8): 230-236. https://doi.org/10.11896/jsjkx.210600042 |
[3] | 李宗民, 张玉鹏, 刘玉杰, 李华. 基于可变形图卷积的点云表征学习 Deformable Graph Convolutional Networks Based Point Cloud Representation Learning 计算机科学, 2022, 49(8): 273-278. https://doi.org/10.11896/jsjkx.210900023 |
[4] | 侯钰涛, 阿布都克力木·阿布力孜, 哈里旦木·阿布都克里木. 中文预训练模型研究进展 Advances in Chinese Pre-training Models 计算机科学, 2022, 49(7): 148-163. https://doi.org/10.11896/jsjkx.211200018 |
[5] | 邵欣欣. TI-FastText自动商品分类算法 TI-FastText Automatic Goods Classification Algorithm 计算机科学, 2022, 49(6A): 206-210. https://doi.org/10.11896/jsjkx.210500089 |
[6] | 李小伟, 舒辉, 光焱, 翟懿, 杨资集. 自然语言处理在简历分析中的应用研究综述 Survey of the Application of Natural Language Processing for Resume Analysis 计算机科学, 2022, 49(6A): 66-73. https://doi.org/10.11896/jsjkx.210600134 |
[7] | 李子仪, 周夏冰, 王中卿, 张民. 基于用户关联的立场检测 Stance Detection Based on User Connection 计算机科学, 2022, 49(5): 221-226. https://doi.org/10.11896/jsjkx.210400135 |
[8] | 高越, 傅湘玲, 欧阳天雄, 陈松龄, 闫晨巍. 基于时空自适应图卷积神经网络的脑电信号情绪识别 EEG Emotion Recognition Based on Spatiotemporal Self-Adaptive Graph ConvolutionalNeural Network 计算机科学, 2022, 49(4): 30-36. https://doi.org/10.11896/jsjkx.210900200 |
[9] | 刘硕, 王庚润, 彭建华, 李柯. 基于混合字词特征的中文短文本分类算法 Chinese Short Text Classification Algorithm Based on Hybrid Features of Characters and Words 计算机科学, 2022, 49(4): 282-287. https://doi.org/10.11896/jsjkx.210200027 |
[10] | 李浩, 张兰, 杨兵, 杨海潇, 寇勇奇, 王飞, 康雁. 融合双重权重机制和图卷积神经网络的微博细粒度情感分类 Fine-grained Sentiment Classification of Chinese Microblogs Combining Dual Weight Mechanismand Graph Convolutional Neural Network 计算机科学, 2022, 49(3): 246-254. https://doi.org/10.11896/jsjkx.201200073 |
[11] | 苗启广, 辛文天, 刘如意, 谢琨, 王泉, 杨宗凯. 面向智慧教育行为分析的图卷积骨架动作识别方法 Graph Convolutional Skeleton-based Action Recognition Method for Intelligent Behavior Analysis 计算机科学, 2022, 49(2): 156-161. https://doi.org/10.11896/jsjkx.220100061 |
[12] | 陈志毅, 隋杰. 基于DeepFM和卷积神经网络的集成式多模态谣言检测方法 DeepFM and Convolutional Neural Networks Ensembles for Multimodal Rumor Detection 计算机科学, 2022, 49(1): 101-107. https://doi.org/10.11896/jsjkx.201200007 |
[13] | 张玮琪, 汤轶丰, 李林燕, 胡伏原. 基于场景图的段落生成序列图像方法 Image Stream From Paragraph Method Based on Scene Graph 计算机科学, 2022, 49(1): 233-240. https://doi.org/10.11896/jsjkx.201100207 |
[14] | 王立梅, 朱旭光, 汪德嘉, 张勇, 邢春晓. 基于深度学习的民事案件判决结果分类方法研究 Study on Judicial Data Classification Method Based on Natural Language Processing Technologies 计算机科学, 2021, 48(8): 80-85. https://doi.org/10.11896/jsjkx.210300130 |
[15] | 裴莹, 李天祥, 王鏖清, 付加胜, 韩霄松. 基于新闻的国际天然气价格趋势预测方法 Prediction Method of International Natural Gas Price Trends Based on News 计算机科学, 2021, 48(6A): 235-239. https://doi.org/10.11896/jsjkx.201000056 |
|