融入句子中远距离词语依赖的图卷积短文本分类方法

计算机科学 ›› 2022, Vol. 49 ›› Issue (2): 279-284.doi: 10.11896/jsjkx.201200062

所属专题: 自然语言处理 虚拟专题

• 人工智能 • 上一篇    下一篇

融入句子中远距离词语依赖的图卷积短文本分类方法

张虎, 柏萍   

  1. 山西大学计算机与信息技术学院 太原030006
  • 收稿日期:2020-12-07 修回日期:2021-05-08 出版日期:2022-02-15 发布日期:2022-02-23
  • 通讯作者: 张虎(zhanghu@sxu.edu.cn)
  • 基金资助:
    国家重点研发计划项目(2018YFB1005103);国家自然科学基金(62176145);山西省自然科学基金(201901D111028)

Graph Convolutional Networks with Long-distance Words Dependency in Sentences for Short Text Classification

ZHANG Hu, BAI Ping   

  1. School of Computer and Information Technology,Shanxi University,Taiyuan 030006,China
  • Received:2020-12-07 Revised:2021-05-08 Online:2022-02-15 Published:2022-02-23
  • About author:ZHANG Hu,born in 1979,Ph.D,asso-ciate professor,is a member of China Computer Federation.His main research interests include natural language processing and representation learning.
  • Supported by:
    National Key Research and Development Program of China(2018YFB1005103),National Natural Science Foundation of China(62176145) and Natural Science Foundation of Shanxi Province,China(201901D111028).

摘要: 随着图神经网络技术在自然语言处理领域中的广泛应用,基于图神经网络的文本分类研究受到了越来越多的关注,文本构图是图神经网络应用到文本分类中的一项重要研究任务,已有方法在构图时通常不能有效捕获句子中远距离词语的依赖关系。短文本分类是待分类文本中普遍较短的一类特殊文本分类任务,传统的文本表示通常比较稀疏且缺乏丰富的语义信息。基于此,文中提出了一种融入远距离词语依赖关系进行构图的图卷积短文本分类方法。首先结合词语共现关系、文档和词语之间的包含关系、远距离词语依赖关系为整个文本语料库构建一个文本图;然后将文本图输入到图卷积神经网络,通过2层卷积后,对每个文档节点进行类别预测。在on_line_shopping_10_cats、中文论文摘要和酒店评论3个数据集上的实验结果表明,所提方法相比已有基线模型取得了更好的效果。

关键词: 短文本分类, 句法关系, 图卷积神经网络, 文本构图, 自然语言处理

Abstract: With the wide application of graph neural network technology in the field of natural language processing,the research of text classification based on graph neural networks has received more and more attention.Building graph for text is an important research task in the application of graph neural networks for text classification.Existing methods cannot effectively capture the dependency of long-distance words in sentences when building graph.Short text classification is a special type of text classification task in which the classified text is generally short,so the traditional text representation is usually sparse and lacks rich semantic information.Based on this,in this paper we propose a short text classification method based on graph convolutional neural networks incorporating long-distance words dependency.Firstly,by using the co-occurrence relationship of words,the containment relationship between documents and words,and the long-distance words dependency in sentences,a text graph is constructed for the entire text corpus.Then,the text graph is input into the graph convolutional neural networks,and the category label prediction is made for each document node after 2-layer convolution.The experimental results on the three datasets of online_shopping_10_cats,summaries of Chinese papers and hotel reviews show that the proposed method achieves better results than the existing baselines.

Key words: Building graph for text, Graph convolutional neural network, Natural language processing, Short text classification, Syntactic relationship

中图分类号: 

  • TP391
[1]KIM Y.Convolutional Neural Networks for Sentence Classifica-tion[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP).2014:1746-1751.
[2]ZHOU C,SUN C,LIU Z,et al.A C-LSTM Neural Network forText Classification[J].Computerence,2015,1(4):39-44.
[3]WANG Y,HUANG M,ZHU X,et al.Attention-based LSTMfor Aspect-level Sentiment Classification[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing.2016:606-615.
[4]ZHOU J,CUI G,ZHANG Z,et al.Graph neural networks:Areview of methods and applications[J].arXiv:1812.08434,2018.
[5]KIPF T N,WELLING M.Semi-supervised classification withgraph convolutional networks[J].arXiv:1609.02907,2016.
[6]HAMILTON W,YING Z,LESKOVEC J.Inductive representation learning on large graphs[C]//Advances in Neural Information Processing Systems.2017:1024-1034.
[7]CHEN J,MA T,XIAO C.FastGCN:Fast Learning with Graph Convolutional Networks via Importance Sampling[C]//International Conference on Learning Representations.2018.
[8]DEFFERRARD M,BRESSON X,VANDERGHEYNST P.Convolutional neural networks on graphs with fast localized spectral filtering[C]//Advances in Neural Information Processing Systems.2016:3844-3852.
[9]ZHANG Y,LIU Q,SONG L.Sentence-State LSTM for Text Representation[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1:Long Papers).2018:317-327.
[10]WANG Y,HE Y M,CHEN H X,et al.RHS-CNN:A CNN Text Classification Model Based on Regularized Hierarchical Softmax[J].Journal of Chongqing University of Technology( Natural Science),2020,34( 5):187-195.
[11]BLEI D M,NG A Y,JORDAN M I.Latent dirichlet allocation[J].Journal of Machine Learning Research,2003,3:993-1022.
[12]JOACHIMS T.Text categorization with support vector ma-chines:Learning with many relevant features[C]//European Conference on Machine Learning.Berlin:Springer,1998:137-142.
[13]WANG X,CHEN R,JIA Y,et al.Short text classification using wikipedia concept based document representation[C]//2013 International Conference on Information Technology and Applications.IEEE,2013:471-474.
[14]MCCALLUM A,NIGAM K.A comparison of event models for naive bayes text classification[C]//AAAI-98 Workshop on Learning for Text Categorization.1998:41-48.
[15]PHAN X H,NGUYEN L M,HORIGUCHI S.Learning to classify short and sparse text & web with hidden topics from large-scale data collections[C]//Proceedings of the 17th International Conference on World Wide Web.2008:91-100.
[16]ZHANG X,ZHAO J,LECUN Y.Character-level convolutional networks for text classification[C]//Advances in Neural Information Processing Systems.2015:649-657.
[17]WANG P,XU B,XU J,et al.Semantic expansion using word embedding clustering and convolutional neural network for improving short text classification[J].Neurocomputing,2016,174:806-814.
[18]YAO L,MAO C,LUO Y.Graph convolutional networks fortext classification[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019,33:7370-7377.
[19]HUANG L,MA D,LI S,et al.Text Level Graph NeuralNetwork for Text Classification[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Proces-sing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP).2019:3435-3441.
[20]HU L M,YANG T C,SHI C,et al.Heterogeneous graph attention networks for semi-supervised short text classification[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP).2019:4823-4832.
[21]CHE W X,LI Z H,LIU T.Ltp:A chinese language technology platform[C]//Coling 2010:Demonstrations.2010:13-16.
[22]YUAN L C.A statistical model of syntactic analysis based ondependence relations[J].Journal of Central South University:Natural Science Edition,2009(6):1630-1635.
[23]HAO M,XU B,LIANG J Y,et al.Chinese Short Text Classification with Mutual-Attention Convolutional Neural Networks[J].ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP),2020,19(5):1-13.
[24]WU X H,CHEN L,WEI T T,et al.Sentiment analysis of Chinese short text based on Self-Attention and Bi-LSTM[J].Journal of Chinese Information Processing,2019,33(6):100-107.
[25]DEFFERRARD M,BRESSON X,VANDERGHEYNST P.Convolutional neural networks on graphs with fast localized spectral filtering[J].Advances in Neural Information Processing Systems,2016,29:3844-3852.
[1] 檀莹莹, 王俊丽, 张超波.
基于图卷积神经网络的文本分类方法研究综述
Review of Text Classification Methods Based on Graph Convolutional Network
计算机科学, 2022, 49(8): 205-216. https://doi.org/10.11896/jsjkx.210800064
[2] 闫佳丹, 贾彩燕.
基于双图神经网络信息融合的文本分类方法
Text Classification Method Based on Information Fusion of Dual-graph Neural Network
计算机科学, 2022, 49(8): 230-236. https://doi.org/10.11896/jsjkx.210600042
[3] 李宗民, 张玉鹏, 刘玉杰, 李华.
基于可变形图卷积的点云表征学习
Deformable Graph Convolutional Networks Based Point Cloud Representation Learning
计算机科学, 2022, 49(8): 273-278. https://doi.org/10.11896/jsjkx.210900023
[4] 侯钰涛, 阿布都克力木·阿布力孜, 哈里旦木·阿布都克里木.
中文预训练模型研究进展
Advances in Chinese Pre-training Models
计算机科学, 2022, 49(7): 148-163. https://doi.org/10.11896/jsjkx.211200018
[5] 邵欣欣.
TI-FastText自动商品分类算法
TI-FastText Automatic Goods Classification Algorithm
计算机科学, 2022, 49(6A): 206-210. https://doi.org/10.11896/jsjkx.210500089
[6] 李小伟, 舒辉, 光焱, 翟懿, 杨资集.
自然语言处理在简历分析中的应用研究综述
Survey of the Application of Natural Language Processing for Resume Analysis
计算机科学, 2022, 49(6A): 66-73. https://doi.org/10.11896/jsjkx.210600134
[7] 李子仪, 周夏冰, 王中卿, 张民.
基于用户关联的立场检测
Stance Detection Based on User Connection
计算机科学, 2022, 49(5): 221-226. https://doi.org/10.11896/jsjkx.210400135
[8] 高越, 傅湘玲, 欧阳天雄, 陈松龄, 闫晨巍.
基于时空自适应图卷积神经网络的脑电信号情绪识别
EEG Emotion Recognition Based on Spatiotemporal Self-Adaptive Graph ConvolutionalNeural Network
计算机科学, 2022, 49(4): 30-36. https://doi.org/10.11896/jsjkx.210900200
[9] 刘硕, 王庚润, 彭建华, 李柯.
基于混合字词特征的中文短文本分类算法
Chinese Short Text Classification Algorithm Based on Hybrid Features of Characters and Words
计算机科学, 2022, 49(4): 282-287. https://doi.org/10.11896/jsjkx.210200027
[10] 李浩, 张兰, 杨兵, 杨海潇, 寇勇奇, 王飞, 康雁.
融合双重权重机制和图卷积神经网络的微博细粒度情感分类
Fine-grained Sentiment Classification of Chinese Microblogs Combining Dual Weight Mechanismand Graph Convolutional Neural Network
计算机科学, 2022, 49(3): 246-254. https://doi.org/10.11896/jsjkx.201200073
[11] 苗启广, 辛文天, 刘如意, 谢琨, 王泉, 杨宗凯.
面向智慧教育行为分析的图卷积骨架动作识别方法
Graph Convolutional Skeleton-based Action Recognition Method for Intelligent Behavior Analysis
计算机科学, 2022, 49(2): 156-161. https://doi.org/10.11896/jsjkx.220100061
[12] 陈志毅, 隋杰.
基于DeepFM和卷积神经网络的集成式多模态谣言检测方法
DeepFM and Convolutional Neural Networks Ensembles for Multimodal Rumor Detection
计算机科学, 2022, 49(1): 101-107. https://doi.org/10.11896/jsjkx.201200007
[13] 张玮琪, 汤轶丰, 李林燕, 胡伏原.
基于场景图的段落生成序列图像方法
Image Stream From Paragraph Method Based on Scene Graph
计算机科学, 2022, 49(1): 233-240. https://doi.org/10.11896/jsjkx.201100207
[14] 王立梅, 朱旭光, 汪德嘉, 张勇, 邢春晓.
基于深度学习的民事案件判决结果分类方法研究
Study on Judicial Data Classification Method Based on Natural Language Processing Technologies
计算机科学, 2021, 48(8): 80-85. https://doi.org/10.11896/jsjkx.210300130
[15] 裴莹, 李天祥, 王鏖清, 付加胜, 韩霄松.
基于新闻的国际天然气价格趋势预测方法
Prediction Method of International Natural Gas Price Trends Based on News
计算机科学, 2021, 48(6A): 235-239. https://doi.org/10.11896/jsjkx.201000056
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!