基于PCANet的非下采样剪切波域多聚焦图像融合

计算机科学 ›› 2021, Vol. 48 ›› Issue (9): 181-186.doi: 10.11896/jsjkx.200800064

• 计算机图形学&多媒体 • 上一篇    下一篇

基于PCANet的非下采样剪切波域多聚焦图像融合

黄晓生, 徐静   

  1. 华东交通大学软件学院 南昌330013
  • 收稿日期:2020-08-11 修回日期:2020-12-25 出版日期:2021-09-15 发布日期:2021-09-10
  • 通讯作者: 徐静(JaneXu0302@163.com)
  • 作者简介:271541580@qq.com
  • 基金资助:
    国家自然科学基金(61763011,61762037,61962021);江西省自然科学基金(20192BBE50079)

Multi-focus Image Fusion Method Based on PCANet in NSST Domain

HUANG Xiao-sheng, XU Jing   

  1. School of Software Engineering,East China Jiaotong University,Nanchang 330013,China
  • Received:2020-08-11 Revised:2020-12-25 Online:2021-09-15 Published:2021-09-10
  • About author:HUANG Xiao-sheng,born in 1972,Ph.D,associate professor,is a member of China Computer Federation.His main research interests include digital image processing,computer vision and computer graphics.
    XU Jing,born in 1996,postgraduate.Her main research interests include image fusion and so on.
  • Supported by:
    National Natural Science Foundation of China(61763011,61762037,61962021) and Natural Science Foundation of Jiangxi Province(20192BBE50079)

摘要: 近年来,基于深度学习模型的图像融合方法备受关注。而传统的深度学习模型通常需要耗时长和复杂的训练过程,并且涉及参数众多。针对这些问题,文中提出了一种基于简单的深度学习模型PCANet的非下采样剪切波(Non-Subsanmpled Shearlet Transform,NSST)域多聚焦图像融合方法。首先,利用多聚焦图像训练两阶段PCANet,用于提取图像特征。然后,对输入源图像进行NSST分解,得到源图像的多尺度和多方向表示。低频子带利用训练好的PCANet提取其图像特征,并利用核范数构造有效的特征空间进行图像融合。高频子带利用区域能量取大的融合规则进行融合。最后对根据不同融合规则融合后的频率系数进行NSST重构,获取清晰的目标图像。实验结果表明,所提算法的训练和融合速度比基于CNN的方法提高了43%,该算法的平均梯度、空间频率、熵等融合性能分别为5.744,15.560和7.059,可以与现有融合方法相媲美或优于现有的融合方法。

关键词: CNN, NSST, PCANet, 多聚焦图像融合, 深度学习

Abstract: The deep learning model based image fusion methods have attracted much attention in recently years.But the traditio-nal deep learning model usually needs a time-consuming and complex training process and a difficulty parameters tuning process on large datasets.To overcome these problems,a simple deep learning model PCANet based multi-focus image fusion method in NSST domain is proposed.Firstly,multi-focus images are used to train two-stage PCANet to extract image features.Then,the input source image is decomposed by NSST to obtain the multi-scale and multi-directional representation of the source image.The low frequency subband uses the trained PCANet to extract its image features,and uses the kernel norm to construct an effective feature space for image fusion.High frequency subbands are fused using the fusion rule of regional energy maximization.Finally,the frequency coefficients fused according to different fusion rules are reconstructed by NSST to obtain a clear target image.The experimental results show that the training and fusion speed of the algorithm is 43% higher than that of the CNN-based method.The average gradient,spatial frequency and entropy of the proposed algorithm are 5.744,15.560 and 7.059 respectively,which can be comparable to or superior to the existing fusion methods.

Key words: CNN, Deep learning, Multi-focus image fusion, NSST, PCANet

中图分类号: 

  • TP391
[1]LI S,KANG X,FANG L,et al.Pixel-level image fusion:A survey of the state of the art[J].Information Fusion,2016,33:100-112.
[2]DOU J F,QIN Q,TU Z M.Image fusion based on wavelettransform with genetic algorithms and human visual system[J].Multimedia Tools and Applications,2019,78(9):12491-12517.
[3]MAO R,FU X,NIU P,et al.Multi-directional Laplacian Pyramid Image Fusion Algorithm[C]//2018 3rd International Conference on Mechanical,Control and Computer Engineering (ICMCCE).IEEE Computer Society,2018.
[4]DO M N,VETTERLI M.The Contourlet Transform:An Efficient Directional Multiresolution Image Representation[J].IEEE Transactions on Image Processing,2006,14(12):2091-2106.
[5]ZHU D R,XU L,WANG F B,et al.Multi-focus image fusion Algorithm based on Fast Finite Shear Wave Transform and Guided Filter[J].Advances in Laser and Optoelectronics,2018,55(1):190-197.
[6]LIU Y,LIU S,WANG Z.A general framework for image fusion based on multi-scale transform and sparse representation[J].Information Fusion,2015,24:147-164.
[7]LIU Y,CHEN X,WANG Z,et al.Deep learning for pixel-level image fusion:Recent advances and future prospects[J].Information Fusion,2018,42:158-173.
[8]LI P,WANG H,LI X,et al.A novel Image Fusion Framework based on Non-Subsampled Shearlet Transform (NSST) Domain[C]//2019 Chinese Control And Decision Conference (CCDC).2019.
[9]YIN M,LIU X,LIU Y,et al.Medical Image Fusion With Pa-rameter-Adaptive Pulse Coupled Neural Network in Nonsubsampled Shearlet Transform Domain[J].Instrumentation & Measurement IEEE Transactions on,2019,68(1):49-64.
[10]WU Y,TAO F.Multispectral and panchromatic image fusionbased on improved projected gradient NMF in NSST domain[J].Guangxue Xuebao/acta Optica Sinica,2015,35(4):0410005.
[11]LIU Y,CHEN X,PENG H,et al.Multi-focus image fusion with a deep convolutional neural network[J].Information Fusion,2017,36:191-207.
[12]DU J K,LONG H L,DING D D,et al.CNN image fusion algorithm based on non-subsampled Shearlet transform[J].Audio Engineering,2019,43(3):37-41,73.
[13]CHAN T H,JIA K,GAO S,et al.PCANet:A Simple DeepLearning Baseline for Image Classification?[J].IEEE Transactions on Image Processing,2015,24(12):5017-5032.
[14]ZHANG D D,LI L.Face detection system based on PCANET-RF[J].Computer Technology and Development,2016(2):31-34.
[15]SONG X,WU X J.Multi-focus Image Fusion with PCA Filters of PCANet[M]//Multimodal Pattern Recognition of Social Signals in Human-Computer-Interaction.2019.
[16]LABATE D,LIM W Q,KUTYNIOK G,et al. Sparse multidimensional representation using shearlets[C]//2005 Proceedings of SPIE-The International Society for Optical Engineering.Bellingham,WA,USA,2005.
[17]EASLEY G,LABATE D,LIM W Q.Sparse directional image representations using the discrete shearlet transform[J].Applied & Computational Harmonic Analysis,2008,25(1):25-46.
[18]ZHANG L T,LV X L,SUN M X,et al.Image Fusion Method Based on Wavelet Transform[J].Electro-Optic Technology Application,2016:204-210.
[19]LIU J S,JIANG W.Improved image fusion algorithm based on nonsubsampled Contourlet transform[J].Journal of Computer Applications,2018,38(z1):194-197.
[20]WANG H,AHMED M S.Multi-focus image fusion algorithmbased on non-subsampled shearlet transform and focus measure[C]//International Conference on Robotics & Machine Vision.2017.
[21]LIU S Q,WANG J,AN Y L,et al.Multi-focus image fusion in non-subsampled shear Wave domain based on CNN[J].Journal of Zhengzhou University:Engineering Science,2019,40(4):36-41.
[1] 饶志双, 贾真, 张凡, 李天瑞.
基于Key-Value关联记忆网络的知识图谱问答方法
Key-Value Relational Memory Networks for Question Answering over Knowledge Graph
计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277
[2] 汤凌韬, 王迪, 张鲁飞, 刘盛云.
基于安全多方计算和差分隐私的联邦学习方案
Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy
计算机科学, 2022, 49(9): 297-305. https://doi.org/10.11896/jsjkx.210800108
[3] 徐涌鑫, 赵俊峰, 王亚沙, 谢冰, 杨恺.
时序知识图谱表示学习
Temporal Knowledge Graph Representation Learning
计算机科学, 2022, 49(9): 162-171. https://doi.org/10.11896/jsjkx.220500204
[4] 王剑, 彭雨琦, 赵宇斐, 杨健.
基于深度学习的社交网络舆情信息抽取方法综述
Survey of Social Network Public Opinion Information Extraction Based on Deep Learning
计算机科学, 2022, 49(8): 279-293. https://doi.org/10.11896/jsjkx.220300099
[5] 郝志荣, 陈龙, 黄嘉成.
面向文本分类的类别区分式通用对抗攻击方法
Class Discriminative Universal Adversarial Attack for Text Classification
计算机科学, 2022, 49(8): 323-329. https://doi.org/10.11896/jsjkx.220200077
[6] 姜梦函, 李邵梅, 郑洪浩, 张建朋.
基于改进位置编码的谣言检测模型
Rumor Detection Model Based on Improved Position Embedding
计算机科学, 2022, 49(8): 330-335. https://doi.org/10.11896/jsjkx.210600046
[7] 孙奇, 吉根林, 张杰.
基于非局部注意力生成对抗网络的视频异常事件检测方法
Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection
计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061
[8] 侯钰涛, 阿布都克力木·阿布力孜, 哈里旦木·阿布都克里木.
中文预训练模型研究进展
Advances in Chinese Pre-training Models
计算机科学, 2022, 49(7): 148-163. https://doi.org/10.11896/jsjkx.211200018
[9] 周慧, 施皓晨, 屠要峰, 黄圣君.
基于主动采样的深度鲁棒神经网络学习
Robust Deep Neural Network Learning Based on Active Sampling
计算机科学, 2022, 49(7): 164-169. https://doi.org/10.11896/jsjkx.210600044
[10] 苏丹宁, 曹桂涛, 王燕楠, 王宏, 任赫.
小样本雷达辐射源识别的深度学习方法综述
Survey of Deep Learning for Radar Emitter Identification Based on Small Sample
计算机科学, 2022, 49(7): 226-235. https://doi.org/10.11896/jsjkx.210600138
[11] 胡艳羽, 赵龙, 董祥军.
一种用于癌症分类的两阶段深度特征选择提取算法
Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification
计算机科学, 2022, 49(7): 73-78. https://doi.org/10.11896/jsjkx.210500092
[12] 程成, 降爱莲.
基于多路径特征提取的实时语义分割方法
Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction
计算机科学, 2022, 49(7): 120-126. https://doi.org/10.11896/jsjkx.210500157
[13] 祝文韬, 兰先超, 罗唤霖, 岳彬, 汪洋.
改进Faster R-CNN的光学遥感飞机目标检测
Remote Sensing Aircraft Target Detection Based on Improved Faster R-CNN
计算机科学, 2022, 49(6A): 378-383. https://doi.org/10.11896/jsjkx.210300121
[14] 王建明, 陈响育, 杨自忠, 史晨阳, 张宇航, 钱正坤.
不同数据增强方法对模型识别精度的影响
Influence of Different Data Augmentation Methods on Model Recognition Accuracy
计算机科学, 2022, 49(6A): 418-423. https://doi.org/10.11896/jsjkx.210700210
[15] 毛典辉, 黄晖煜, 赵爽.
符合监管合规性的自动合成新闻检测方法研究
Study on Automatic Synthetic News Detection Method Complying with Regulatory Compliance
计算机科学, 2022, 49(6A): 523-530. https://doi.org/10.11896/jsjkx.210300083
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!