光谱重建约束非负矩阵分解的高光谱与全色图像融合

计算机科学 ›› 2021, Vol. 48 ›› Issue (9): 153-159.doi: 10.11896/jsjkx.200900054

• 计算机图形学&多媒体 • 上一篇    下一篇

光谱重建约束非负矩阵分解的高光谱与全色图像融合

官铮, 邓扬琳, 聂仁灿   

  1. 云南大学信息学院 昆明650091
  • 收稿日期:2020-09-07 修回日期:2020-12-08 出版日期:2021-09-15 发布日期:2021-09-10
  • 通讯作者: 聂仁灿(rcnie@ynu.edu.cn)
  • 作者简介:gz_627@sina.com
  • 基金资助:
    国家自然科学基金(61761045,61966037,61463052);中国博士后科学基金(2017M621586)

Non-negative Matrix Factorization Based on Spectral Reconstruction Constraint for Hyperspectral and Panchromatic Image Fusion

GUAN Zheng, DENG Yang-lin, NIE Ren-can   

  1. School of Information Science and Engineering,Yunnan University,Kunming 650091,China
  • Received:2020-09-07 Revised:2020-12-08 Online:2021-09-15 Published:2021-09-10
  • About author:GUAN Zheng,born in 1982,Ph.D,associate professor,master supervisor,is a member of China Computer Federation.Her main research interests include image processing and polling and communication systems.
    NIE Ren-can,born in 1982,Ph.D,associate professor,master supervisor.His main research interests include neural networks,image processing and machine learning.
  • Supported by:
    National Natural Science Foundation of China(61761045,61966037,61463052) and China Postdoctoral Science Foundation(2017M621586)

摘要: 基于光谱重建约束的非负矩阵分解,提出了一种高光谱与全色图像的有效解混方法。首先在高光谱图像的非负矩阵分解中引入光谱重建误差最小化的正则项,通过多目标寻优寻找最佳的正则项参数,以鼓励分解的光谱特征矩阵包含更真实的光谱特征;然后对全色图像进行非负矩阵分解,以获得描述图像细节的丰度矩阵;最后利用光谱特征矩阵和丰度矩阵重建得到融合结果。实验仿真结果表明,所提方法的融合结果能在较好地保留全色图像细节的同时,有效地避免光谱畸变,在视觉效果和客观评价方面均优于传统方法。

关键词: 多目标寻优, 非负矩阵分解, 高光谱与全色图像, 光谱重建约束, 图像融合

Abstract: An effective algorithm for unmixing hyperspectral and panchromatic images of non-negative matrix factorization based on spectral reconstruction constraint is proposed.Firstly,this algorithm employs the regularization with minimum spectral reconstruction error in the process of non-negative matrix factorization for the hyperspectral image,and searches for the optimal regularization parameter through multi-objective optimization to inspire the spectral signature matrix to contain more real spectral features.Then,the panchromatic image is factorized by non-negative matrix to obtain the abundance matrix with the details of the image.Finally,the fusion result is reconstructed by using the spectral signature matrix and the abundance matrix.The experimental results show that the fusion result of the proposed algorithm maintains more details of panchromatic images and effectively decreases spectral distortion simultaneously.It has better performance in both visual effects and objective evaluation than traditional algorithms.

Key words: Hyperspectral and panchromatic image, Image fusion, Multi-objective optimization, Non-negative factorization, Spectral reconstruction constraint

中图分类号: 

  • TP391
[1]OU X F,ZHANG Y M,WANG H P,et al.Hyperspectral Image Target Detection via Weighted Joint K-Nearest Neighbor and Multitask Learning Sparse Representation[J].IEEE Access,2020(8):11503-11511.
[2]YANG S,SHI Z W,TANG W.Robust Hyperspectral ImageTarget Detection Using an Inequality Constraint[J].IEEE Transactions on Geoscience and Remote Sensing,2015,53(6):3389-3404.
[3]ASADZADEH S,CARLOS R D S F.A review on spectral processing methods for geological remote sensing[J].International Journal of Applied Earth Observation and Geoinformation,2016,47:69-90.
[4]ZHU L X,WEN G J,QIU S H,et al.Improving Hyperspectral Anomaly Detection with a Simple Weighting Strategy[J].IEEE Geoscience and Remote Sensing Letters,2019,16(1):95-99.
[5]LI S T,ZHANG K Z,HAO Q B,et al.Hyperspectral Anomaly Detection with Multiscale Attribute and Edge-Preserving Filters[J].IEEE Geoscience and Remote Sensing Letters,2018,15(10):1605-1609.
[6]DAI S J,GAO Z B,SHI Z Y,et al.Material Intelligent Identification Based on Hyperspectral Imaging and SVM[C]//Computational Intelligence.2015:69-72.
[7]RODRIGUEZCOBO L,PILAR B G,COBO A,et al.Raw Material Classification by Means of Hyperspectral Imaging and Hie-rarchical Temporal Memories[J].IEEE Sensors Journal,2012,12(9):2767-2775.
[8]ZHANG M,LI J,DING R L,et al.Remote Sensing Image Object Detection Technology Based on Improved YOLO-V2 Algorithm[J].Computer Science,2020,47(S2):176-180.
[9]WANG Q,YAN P K,YUAN Y,et al.Multi-spectral saliency detection[J].Pattern Recognition Letters,2013,34(1):34-41.
[10]RONG K X,JIAO L C,WANG S,et al.Pansharpening Based on Low-Rank and Sparse Decomposition[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sen-sing,2014,7(12):4793-4805.
[11]YEE L,LIU J M,ZHANG J S.An Improved Adaptive Intensity-Hue-Saturation Method for the Fusion of Remote Sensing Images[J].IEEE Geoscience and Remote Sensing Letters,2014,11(5):985-989.
[12]YOKOYA N,CLAAS G,JOCELYN C.Hyperspectral and Multispectral Data Fusion:A comparative review of the recent litera-ture[J].IEEE Geoscience and Remote Sensing Magazine,2017,5(2):29-56.
[13]SELVA M,BRUNO A,FRANCESCO B,et al.Hyper-Sharpe-ning:A First Approach on SIM-GA Data[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2015,8(6):3008-3024.
[14]VINONE G,LUCIANO A,JOCELYN C,et al.A Critical Comparison Among Pansharpening Algorithms[J].IEEE Transactions on Geoscience and Remote Sensing,2015,53(5):2565-2586.
[15]YAN J J,XIA C M,ZHENG J R.Multispectral Image and Panchromatic Image Fusion Method Based on Non-negative Matrix Factorization[J].Computer Engineering,2007,33(21):169-171.
[16]WANG Z N,YU X C,ZHANG L B.A Remote Sensing Image Fusion Algorithm Based on Constrained Nonnegative Matrix Factorization[J].Congress on Image and Signal Processing,2008 (4):672-676.
[17]BIENIARZ J,CERRA D,AVBELJ J,et al.Hyperspectral image resolution enhancement based on spectral unmixing and information fusion[C]//ISPRS-International Archives of the Photo-grammetry,Remote Sensing and Spatial Information Sciences.2012,1:33-37.
[18]YOKOYA N,TAKEHISA Y,AKIRA I.Coupled Nonnegative Matrix Factorization Unmixing for Hyperspectral and Multispectral Data Fusion[J].IEEE Transactions on Geoscience and Remote Sensing,2012,50(2):528-537.
[19]LI H,CHANG Z Y.Multi-objective Optimization ProblemBased on Genetic Algorithm[J].Information Technology Journal,2013,12(22):6968-6973.
[20]LEE D D,SEUNG H S.Learning the parts of objects by non-negative matrix factorization[J].Nature,1999,401(6755):788-791.
[21]ZHANG H Y,ZHANG L P,SHEN H F.A super-resolution reconstruction algorithm for hyperspectral images[J].Signal Processing,2012,92(9):2082-2096.
[22]QIAO Y C,BALDUR V L,BOUDEWIJN P F L,et al.Fast Automatic Step Size Estimation for Gradient Descent Optimization of Image Registration[J].IEEE Transactions on Medical Imaging,2016,35(2):391-403.
[23]NASCIMENTO J M P,DIAS J M B.Vertex component analysis:a fast algorithm to unmix hyperspectral data[J].IEEE Transactions on Geoscience and Remote Sensing,2005,43(4):898-910.
[24]WALD L,THIERRY R,MARC M.Fusion of satellite images ofdifferent spatial resolutions:Assessing the quality of resulting images[J].Photogrammetric Engineering and Remote Sensing,1997,63(6):691-699.
[25]CHANG C I.An information theoretic-based approach to spectral variability,similarity,and discriminability for hyperspectral image analysis[C]//IEEE Trans Information Theory.2000.
[26]PALSSON F,JOHANNES R S,MAGNUS O U,et al.Quantitative Quality Evaluation of Pansharpened Imagery:Consistency Versus Synthesis[J].IEEE Transactions on Geoscience and Remote Sensing,2016,54(3):1247-1259.
[27]LONCAN L,LUIS B A,JOSE M B,et al.Hyperspectral Pansharpening:A Review[J].IEEE Geoscience and RemoteSen-sing Magazine,2015,3(3):27-46.
[28]ZHANG L F,ZHANG L P,TAO D C,et al.On CombiningMultiple Features for Hyperspectral Remote Sensing Image Classification[J].IEEE Transactions on Geoscience and Remote Sensing,2012,50(3):879-893.
[1] 来腾飞, 周海洋, 余飞鸿.
视频流的实时景深延拓算法
Real-time Extend Depth of Field Algorithm for Video Processing
计算机科学, 2022, 49(6A): 314-318. https://doi.org/10.11896/jsjkx.201100187
[2] 赵明华, 周童童, 都双丽, 石争浩.
基于虚拟曝光方法的单幅逆光图像增强
Single Backlit Image Enhancement Based on Virtual Exposure Method
计算机科学, 2022, 49(6A): 384-389. https://doi.org/10.11896/jsjkx.210400243
[3] 高元浩, 罗晓清, 张战成.
基于特征分离的红外与可见光图像融合算法
Infrared and Visible Image Fusion Based on Feature Separation
计算机科学, 2022, 49(5): 58-63. https://doi.org/10.11896/jsjkx.210200148
[4] 颜敏, 罗晓清, 张战成.
基于光传输模型学习的红外和可见光图像融合网络设计
Infrared and Visible Image Fusion Network Based on Optical Transmission Model Learning
计算机科学, 2022, 49(4): 215-220. https://doi.org/10.11896/jsjkx.210200174
[5] 黄晓生, 徐静.
基于PCANet的非下采样剪切波域多聚焦图像融合
Multi-focus Image Fusion Method Based on PCANet in NSST Domain
计算机科学, 2021, 48(9): 181-186. https://doi.org/10.11896/jsjkx.200800064
[6] 田嵩旺, 蔺素珍, 杨博.
基于多判别器的多波段图像自监督融合方法
Multi-band Image Self-supervised Fusion Method Based on Multi-discriminator
计算机科学, 2021, 48(8): 185-190. https://doi.org/10.11896/jsjkx.200600132
[7] 段菲, 王慧敏, 张超.
面向数据表示的Cauchy非负矩阵分解
Cauchy Non-negative Matrix Factorization for Data Representation
计算机科学, 2021, 48(6): 96-102. https://doi.org/10.11896/jsjkx.200700195
[8] 王丽芳, 王蕊芳, 蔺素珍, 秦品乐, 高媛, 张晋.
基于双残差超密集网络的多模态医学图像融合
Multimodal Medical Image Fusion Based on Dual Residual Hyper Densely Networks
计算机科学, 2021, 48(2): 160-166. https://doi.org/10.11896/jsjkx.200400095
[9] 李雨蓉, 刘杰, 刘亚林, 龚春叶, 王勇.
面向语音分离的深层转导式非负矩阵分解并行算法
Parallel Algorithm of Deep Transductive Non-negative Matrix Factorization for Speech Separation
计算机科学, 2020, 47(8): 49-55. https://doi.org/10.11896/jsjkx.190900202
[10] 朱珍, 黄锐, 臧铁钢, 卢世军.
基于加权近红外图像融合的单幅图像除雾方法
Single Image Defogging Method Based on Weighted Near-InFrared Image Fusion
计算机科学, 2020, 47(8): 241-244. https://doi.org/10.11896/jsjkx.200300068
[11] 李向利, 贾梦雪.
基于预处理的超图非负矩阵分解算法
Nonnegative Matrix Factorization Algorithm with Hypergraph Based on Per-treatments
计算机科学, 2020, 47(7): 71-77. https://doi.org/10.11896/jsjkx.200200106
[12] 朱莹,夏亦犁,裴文江.
基于改进的BEMD的红外与可见光图像融合方法
Fusion of Infrared and Color Visible Images Based on Improved BEMD
计算机科学, 2020, 47(3): 124-129. https://doi.org/10.11896/jsjkx.190100038
[13] 王丽星, 曹付元.
基于Huber损失的非负矩阵分解算法
Huber Loss Based Nonnegative Matrix Factorization Algorithm
计算机科学, 2020, 47(11): 80-87. https://doi.org/10.11896/jsjkx.190900144
[14] 周昌, 李向利, 李俏霖, 朱丹丹, 陈世莲, 蒋丽榕.
基于余弦相似度的稀疏非负矩阵分解算法
Sparse Non-negative Matrix Factorization Algorithm Based on Cosine Similarity
计算机科学, 2020, 47(10): 108-113. https://doi.org/10.11896/jsjkx.190700112
[15] 李昌兴, 雷柳, 张晓璐.
基于形态学图像增强和PCNN的脑部CT与MRI图像融合
Brain CT and MRI Image Fusion Based on Morphological Image Enhancement and PCNN
计算机科学, 2020, 47(10): 194-199. https://doi.org/10.11896/jsjkx.190700185
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!