基于参数自适应策略的改进乌鸦搜索算法

计算机科学 ›› 2021, Vol. 48 ›› Issue (6A): 260-263.doi: 10.11896/jsjkx.201100158

• 智能计算 • 上一篇    下一篇

基于参数自适应策略的改进乌鸦搜索算法

林忠甫, 颜力, 黄伟, 李洁   

  1. 国防科技大学空天科学学院 长沙410073
  • 出版日期:2021-06-10 发布日期:2021-06-17
  • 通讯作者: 颜力(scarlet@163.com)
  • 作者简介:lin_zf_l@163.com
  • 基金资助:
    国家自然科学基金项目(11972368);国家自然科学基金重点项目(U1730247)

Improved Crow Search Algorithm Based on Parameter Adaptive Strategy

LIN Zhong-fu, YAN Li, HUANG Wei, LI Jie   

  1. College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,China
  • Online:2021-06-10 Published:2021-06-17
  • About author:LIN Zhong-fu,born in 1995,postgra-duate.His main research interests include overall design and optimization of aircraft,and variable-fidelity surrogate model.
    YAN Li,born in 1976,Ph.D,associate professor.Her main research interests include the overall design and optimization of aircraft,and the theory and application of multidisciplinary design optimization.
  • Supported by:
    National Natural Science Foundation of China(11972368) and National Natural Science Foundation of China(U1730247).

摘要: 乌鸦搜索算法(CSA)是近年发展起来的一种新型智能优化算法,具有搜索精度高、收敛速度快等优点,但是其搜索性能对参数依赖性较强,参数的选取对算法的全局搜索能力、收敛速度至关重要。为解决最佳参数的确定问题,首先提出了一种用于表征种群优化算法收敛进程的方法,从而将优化过程分为前、中、后期,并在此基础上提出了一种基于优化过程的自适应参数乌鸦搜索算法(APICSA)。经Levy No.5函数和齿轮系统设计问题对APICSA算法的测试表明,相对于标准CSA算法,该方法的可靠性和收敛速度可以得到更好的平衡,且均有一定程度的提高。与人工蜂群算法(ABC)等其他智能优化算法相比,该方法在50次运算中的标准差比ABC算法减小了55%,平均值与最优解的误差减小了67.7%,说明APICSA算法在可靠性和精度上具有更大优势。

关键词: 工程设计, 乌鸦搜索算法, 优化, 自适应策略

Abstract: Crow search algorithm (CSA) is a new intelligent optimization algorithm developed in recent years.It has the advantages of high optimization accuracy and fast convergence speed.However,its search performance is strongly dependent on its parameters.The selection of parameters is very important to the global search ability as well as the convergence speed of the algorithm.In order to solve the problem of determining the optimal parameters,a method for characterizing the convergence process of the population optimization algorithm is proposed first,so that the optimization process can be divided into pre-,mid-,and late stages.On this basis,an adaptive parameter improved Crow search algorithm (APICSA) based on the optimization process is proposed.The test results of Levy No.5 function and gear system design problem show that the reliability and convergence speed of APICSA method can be better balanced,and both are improved to a certain extent.Compared with other intelligent optimization algorithms such as artificial bee colony algorithm (ABC),the standard deviation of this method in 50 operations is reduced by 55%,and the error between the average value and the optimal solution is reduced by 67.7%,which show that APICSA algorithm performs better in reliability and accuracy.

Key words: Adaptive strategy, Crow search algorithm, Engineering design, Optimization

中图分类号: 

  • TP202+.7
[1] ASKARZADEH A.A novel metaheuristic method forsolvingconstrained engineering optimization problems:crow search algorithm[J].Computers & Structures,2016,169:1-12.
[2] ANTER A M,ALI M,et al.Feature selection strategybased on hybrid crow search optimization algorithm integrated with chaos theory and fuzzy c-means algorithm for medical diagnosis problems[J].Applied Soft Computer,2020,24(3):1565-1584.
[3] GUPTA D,SUNDARAM S,et al.Improved diagnosis of Par-kinson's disease using optimized crow search algorithm[J].Computers & Electrical Engineering,2018,68:412-424.
[4] SAYED G I,HASSANIEN A E,et al.Feature selection via a novel chaotic crow search algorithm[J].Neural Computer & Applications,2019,31:171-188.
[5] OLIVA D,HINOJOSA S,CURVAS E,et al.Cross entropybased thresholding for magnetic resonance brain images using Crow Search Algorithm[J].Expert Systems with Applications,2017,79:164-180.
[6] ALEEM A,ZOBAA A F,BALCI M E.Optimal resonance-free third-order high-pass filters based on minimization of the total cost of the filters using Crow Search Algorithm[J].Electric Power Systems Research,2017,151:381-394.
[7] LIU D,LIU C L,FUQ,et al.ELM evaluation model of regional groundwater quality based on the crow search algorithm[J].Ecological Indicators,2017,81:302-314.
[8] ABDALLH G Y,ALGAMAL Z Y.A QSAR classification model of skin sensitization potential based on improving binary crow search algorithm[J].Electronic Journal of Applied Statistical Analysis,2020,13(1):86-95.
[9] COELHO L S,RICHTER C,MARIANI V C,et al.Modifiedcrow search approach applied to electromagnetic optimization[C]//17th IEEE Biennial Conference on Electromagnetic Field Computation (IEEE CEFC).2016:13-16.
[10] GUPTA D,RODRIGUES J J,SUNDARAM S,et al.Usability feature extraction using modified crow search algorithm:A novel approach[J].Neural Computer & Applications,2020,32(15):10915-10925.
[11] MOHAMMADI F,ABDI H.A modified crow search algorithm (MCSA)for solving economic load dispatch problem [J].Applied Soft Computer,2018,71:51-65.
[12] CUEVAS E,ESPEJO E B,et al.A modified crow search algorithm with applications to power system problems [C]//Metaheuristics Algorithms in Power Systems.2019:137-166.
[13] MANDALA J,CHANDRA S R,et al.Privacy preservation ofdata using crow search with adaptive awareness probability[J].Journal of Information Security and Applications,2019,44:157-169.
[14] HUANG W,LUO S B,WANG Z G.Crossbreeding ParticleSwarm Optimization Algorithm Based on Dynamic Parameter [J].Computer Science,2010,37(12):165-166,170.
[15] PARSOPOULOS K,VRAHATIS M.Unified particle swarmoptimization for solving constrained engineering optimizationproblems[C]//1st International Conference on Natural Computation (ICNC).2005,3612:582-591.
[16] AKAY B,KARABOGA D.Artificial bee colony algorithm for large-scale problems and engineering design optimization[J].Journal of Intelligent Manufacturing,2012,23:1001-1014.
[17] SADOLLAH A,BAHREININEJAD A,et al.Mine blast algorithm:a new population based algorithm for solving constrained engineering optimization problems[J].Applied Soft Computer,2013,13:2592-2612.
[1] 鲁晨阳, 邓苏, 马武彬, 吴亚辉, 周浩浩.
基于分层抽样优化的面向异构客户端的联邦学习
Federated Learning Based on Stratified Sampling Optimization for Heterogeneous Clients
计算机科学, 2022, 49(9): 183-193. https://doi.org/10.11896/jsjkx.220500263
[2] 王灿, 刘永坚, 解庆, 马艳春.
基于软标签和样本权重优化的Anchor Free目标检测算法
Anchor Free Object Detection Algorithm Based on Soft Label and Sample Weight Optimization
计算机科学, 2022, 49(8): 157-164. https://doi.org/10.11896/jsjkx.210600240
[3] 陈俊, 何庆, 李守玉.
基于自适应反馈调节因子的阿基米德优化算法
Archimedes Optimization Algorithm Based on Adaptive Feedback Adjustment Factor
计算机科学, 2022, 49(8): 237-246. https://doi.org/10.11896/jsjkx.210700150
[4] 李其烨, 邢红杰.
基于最大相关熵的KPCA异常检测方法
KPCA Based Novelty Detection Method Using Maximum Correntropy Criterion
计算机科学, 2022, 49(8): 267-272. https://doi.org/10.11896/jsjkx.210700175
[5] 王兵, 吴洪亮, 牛新征.
基于改进势场法的机器人路径规划
Robot Path Planning Based on Improved Potential Field Method
计算机科学, 2022, 49(7): 196-203. https://doi.org/10.11896/jsjkx.210500020
[6] 唐枫, 冯翔, 虞慧群.
基于自适应知识迁移与资源分配的多任务协同优化算法
Multi-task Cooperative Optimization Algorithm Based on Adaptive Knowledge Transfer andResource Allocation
计算机科学, 2022, 49(7): 254-262. https://doi.org/10.11896/jsjkx.210600184
[7] 张翀宇, 陈彦明, 李炜.
边缘计算中面向数据流的实时任务调度算法
Task Offloading Online Algorithm for Data Stream Edge Computing
计算机科学, 2022, 49(7): 263-270. https://doi.org/10.11896/jsjkx.210300195
[8] 赵冬梅, 吴亚星, 张红斌.
基于IPSO-BiLSTM的网络安全态势预测
Network Security Situation Prediction Based on IPSO-BiLSTM
计算机科学, 2022, 49(7): 357-362. https://doi.org/10.11896/jsjkx.210900103
[9] 鲁晨阳, 邓苏, 马武彬, 吴亚辉, 周浩浩.
基于DBSCAN聚类的集群联邦学习方法
Clustered Federated Learning Methods Based on DBSCAN Clustering
计算机科学, 2022, 49(6A): 232-237. https://doi.org/10.11896/jsjkx.211100059
[10] 陈钧吾, 余华山.
面向无尺度图的Δ-stepping算法改进策略
Strategies for Improving Δ-stepping Algorithm on Scale-free Graphs
计算机科学, 2022, 49(6A): 594-600. https://doi.org/10.11896/jsjkx.210400062
[11] 刘漳辉, 郑鸿强, 张建山, 陈哲毅.
多无人机使能移动边缘计算系统中的计算卸载与部署优化
Computation Offloading and Deployment Optimization in Multi-UAV-Enabled Mobile Edge Computing Systems
计算机科学, 2022, 49(6A): 619-627. https://doi.org/10.11896/jsjkx.210600165
[12] 范星泽, 禹梅.
改进灰狼算法的无线传感器网络覆盖优化
Coverage Optimization of WSN Based on Improved Grey Wolf Optimizer
计算机科学, 2022, 49(6A): 628-631. https://doi.org/10.11896/jsjkx.210500037
[13] 王显芳, 张亮, 张宁.
基于前景理论的微信健康信息质量三方博弈分析
Evolutionary Game Analysis of WeChat Health Information Quality Optimization Based on Prospect Theory
计算机科学, 2022, 49(6A): 694-704. https://doi.org/10.11896/jsjkx.210900186
[14] 李亚茹, 张宇来, 王佳晨.
面向超参数估计的贝叶斯优化方法综述
Survey on Bayesian Optimization Methods for Hyper-parameter Tuning
计算机科学, 2022, 49(6A): 86-92. https://doi.org/10.11896/jsjkx.210300208
[15] 康雁, 王海宁, 陶柳, 杨海潇, 杨学昆, 王飞, 李浩.
混合改进的花授粉算法与灰狼算法用于特征选择
Hybrid Improved Flower Pollination Algorithm and Gray Wolf Algorithm for Feature Selection
计算机科学, 2022, 49(6A): 125-132. https://doi.org/10.11896/jsjkx.210600135
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!