计算机科学 ›› 2021, Vol. 48 ›› Issue (6A): 260-263.doi: 10.11896/jsjkx.201100158
林忠甫, 颜力, 黄伟, 李洁
LIN Zhong-fu, YAN Li, HUANG Wei, LI Jie
摘要: 乌鸦搜索算法(CSA)是近年发展起来的一种新型智能优化算法,具有搜索精度高、收敛速度快等优点,但是其搜索性能对参数依赖性较强,参数的选取对算法的全局搜索能力、收敛速度至关重要。为解决最佳参数的确定问题,首先提出了一种用于表征种群优化算法收敛进程的方法,从而将优化过程分为前、中、后期,并在此基础上提出了一种基于优化过程的自适应参数乌鸦搜索算法(APICSA)。经Levy No.5函数和齿轮系统设计问题对APICSA算法的测试表明,相对于标准CSA算法,该方法的可靠性和收敛速度可以得到更好的平衡,且均有一定程度的提高。与人工蜂群算法(ABC)等其他智能优化算法相比,该方法在50次运算中的标准差比ABC算法减小了55%,平均值与最优解的误差减小了67.7%,说明APICSA算法在可靠性和精度上具有更大优势。
中图分类号:
[1] ASKARZADEH A.A novel metaheuristic method forsolvingconstrained engineering optimization problems:crow search algorithm[J].Computers & Structures,2016,169:1-12. [2] ANTER A M,ALI M,et al.Feature selection strategybased on hybrid crow search optimization algorithm integrated with chaos theory and fuzzy c-means algorithm for medical diagnosis problems[J].Applied Soft Computer,2020,24(3):1565-1584. [3] GUPTA D,SUNDARAM S,et al.Improved diagnosis of Par-kinson's disease using optimized crow search algorithm[J].Computers & Electrical Engineering,2018,68:412-424. [4] SAYED G I,HASSANIEN A E,et al.Feature selection via a novel chaotic crow search algorithm[J].Neural Computer & Applications,2019,31:171-188. [5] OLIVA D,HINOJOSA S,CURVAS E,et al.Cross entropybased thresholding for magnetic resonance brain images using Crow Search Algorithm[J].Expert Systems with Applications,2017,79:164-180. [6] ALEEM A,ZOBAA A F,BALCI M E.Optimal resonance-free third-order high-pass filters based on minimization of the total cost of the filters using Crow Search Algorithm[J].Electric Power Systems Research,2017,151:381-394. [7] LIU D,LIU C L,FUQ,et al.ELM evaluation model of regional groundwater quality based on the crow search algorithm[J].Ecological Indicators,2017,81:302-314. [8] ABDALLH G Y,ALGAMAL Z Y.A QSAR classification model of skin sensitization potential based on improving binary crow search algorithm[J].Electronic Journal of Applied Statistical Analysis,2020,13(1):86-95. [9] COELHO L S,RICHTER C,MARIANI V C,et al.Modifiedcrow search approach applied to electromagnetic optimization[C]//17th IEEE Biennial Conference on Electromagnetic Field Computation (IEEE CEFC).2016:13-16. [10] GUPTA D,RODRIGUES J J,SUNDARAM S,et al.Usability feature extraction using modified crow search algorithm:A novel approach[J].Neural Computer & Applications,2020,32(15):10915-10925. [11] MOHAMMADI F,ABDI H.A modified crow search algorithm (MCSA)for solving economic load dispatch problem [J].Applied Soft Computer,2018,71:51-65. [12] CUEVAS E,ESPEJO E B,et al.A modified crow search algorithm with applications to power system problems [C]//Metaheuristics Algorithms in Power Systems.2019:137-166. [13] MANDALA J,CHANDRA S R,et al.Privacy preservation ofdata using crow search with adaptive awareness probability[J].Journal of Information Security and Applications,2019,44:157-169. [14] HUANG W,LUO S B,WANG Z G.Crossbreeding ParticleSwarm Optimization Algorithm Based on Dynamic Parameter [J].Computer Science,2010,37(12):165-166,170. [15] PARSOPOULOS K,VRAHATIS M.Unified particle swarmoptimization for solving constrained engineering optimizationproblems[C]//1st International Conference on Natural Computation (ICNC).2005,3612:582-591. [16] AKAY B,KARABOGA D.Artificial bee colony algorithm for large-scale problems and engineering design optimization[J].Journal of Intelligent Manufacturing,2012,23:1001-1014. [17] SADOLLAH A,BAHREININEJAD A,et al.Mine blast algorithm:a new population based algorithm for solving constrained engineering optimization problems[J].Applied Soft Computer,2013,13:2592-2612. |
[1] | 鲁晨阳, 邓苏, 马武彬, 吴亚辉, 周浩浩. 基于分层抽样优化的面向异构客户端的联邦学习 Federated Learning Based on Stratified Sampling Optimization for Heterogeneous Clients 计算机科学, 2022, 49(9): 183-193. https://doi.org/10.11896/jsjkx.220500263 |
[2] | 王灿, 刘永坚, 解庆, 马艳春. 基于软标签和样本权重优化的Anchor Free目标检测算法 Anchor Free Object Detection Algorithm Based on Soft Label and Sample Weight Optimization 计算机科学, 2022, 49(8): 157-164. https://doi.org/10.11896/jsjkx.210600240 |
[3] | 陈俊, 何庆, 李守玉. 基于自适应反馈调节因子的阿基米德优化算法 Archimedes Optimization Algorithm Based on Adaptive Feedback Adjustment Factor 计算机科学, 2022, 49(8): 237-246. https://doi.org/10.11896/jsjkx.210700150 |
[4] | 李其烨, 邢红杰. 基于最大相关熵的KPCA异常检测方法 KPCA Based Novelty Detection Method Using Maximum Correntropy Criterion 计算机科学, 2022, 49(8): 267-272. https://doi.org/10.11896/jsjkx.210700175 |
[5] | 王兵, 吴洪亮, 牛新征. 基于改进势场法的机器人路径规划 Robot Path Planning Based on Improved Potential Field Method 计算机科学, 2022, 49(7): 196-203. https://doi.org/10.11896/jsjkx.210500020 |
[6] | 唐枫, 冯翔, 虞慧群. 基于自适应知识迁移与资源分配的多任务协同优化算法 Multi-task Cooperative Optimization Algorithm Based on Adaptive Knowledge Transfer andResource Allocation 计算机科学, 2022, 49(7): 254-262. https://doi.org/10.11896/jsjkx.210600184 |
[7] | 张翀宇, 陈彦明, 李炜. 边缘计算中面向数据流的实时任务调度算法 Task Offloading Online Algorithm for Data Stream Edge Computing 计算机科学, 2022, 49(7): 263-270. https://doi.org/10.11896/jsjkx.210300195 |
[8] | 赵冬梅, 吴亚星, 张红斌. 基于IPSO-BiLSTM的网络安全态势预测 Network Security Situation Prediction Based on IPSO-BiLSTM 计算机科学, 2022, 49(7): 357-362. https://doi.org/10.11896/jsjkx.210900103 |
[9] | 鲁晨阳, 邓苏, 马武彬, 吴亚辉, 周浩浩. 基于DBSCAN聚类的集群联邦学习方法 Clustered Federated Learning Methods Based on DBSCAN Clustering 计算机科学, 2022, 49(6A): 232-237. https://doi.org/10.11896/jsjkx.211100059 |
[10] | 陈钧吾, 余华山. 面向无尺度图的Δ-stepping算法改进策略 Strategies for Improving Δ-stepping Algorithm on Scale-free Graphs 计算机科学, 2022, 49(6A): 594-600. https://doi.org/10.11896/jsjkx.210400062 |
[11] | 刘漳辉, 郑鸿强, 张建山, 陈哲毅. 多无人机使能移动边缘计算系统中的计算卸载与部署优化 Computation Offloading and Deployment Optimization in Multi-UAV-Enabled Mobile Edge Computing Systems 计算机科学, 2022, 49(6A): 619-627. https://doi.org/10.11896/jsjkx.210600165 |
[12] | 范星泽, 禹梅. 改进灰狼算法的无线传感器网络覆盖优化 Coverage Optimization of WSN Based on Improved Grey Wolf Optimizer 计算机科学, 2022, 49(6A): 628-631. https://doi.org/10.11896/jsjkx.210500037 |
[13] | 王显芳, 张亮, 张宁. 基于前景理论的微信健康信息质量三方博弈分析 Evolutionary Game Analysis of WeChat Health Information Quality Optimization Based on Prospect Theory 计算机科学, 2022, 49(6A): 694-704. https://doi.org/10.11896/jsjkx.210900186 |
[14] | 李亚茹, 张宇来, 王佳晨. 面向超参数估计的贝叶斯优化方法综述 Survey on Bayesian Optimization Methods for Hyper-parameter Tuning 计算机科学, 2022, 49(6A): 86-92. https://doi.org/10.11896/jsjkx.210300208 |
[15] | 康雁, 王海宁, 陶柳, 杨海潇, 杨学昆, 王飞, 李浩. 混合改进的花授粉算法与灰狼算法用于特征选择 Hybrid Improved Flower Pollination Algorithm and Gray Wolf Algorithm for Feature Selection 计算机科学, 2022, 49(6A): 125-132. https://doi.org/10.11896/jsjkx.210600135 |
|