计算机科学 ›› 2021, Vol. 48 ›› Issue (5): 109-116.doi: 10.11896/jsjkx.200600115
所属专题: 大数据&数据科学 虚拟专题
梁浩宏1,2, 古天龙2, 宾辰忠2, 常亮1,2
LIANG Hao-hong1,2, GU Tian-long2, BIN Chen-zhong2, CHANG Liang1,2
摘要: 如何在已有的用户行为和辅助信息的基础上准确建模用户的偏好非常重要。在各种辅助信息中,知识图谱(Know-ledge Graph,KG)作为一种新型辅助信息,其节点和边包含了丰富的结构信息和语义信息,近年来受到了越来越多研究者的关注。大量研究表明,在个性化推荐中引入知识图谱可以有效地提高推荐的性能,并增强推荐的合理性和可解释性。然而,现有的方法要么是在KG上探索每个用户-项目交互对(user-item)的独立子路径,要么使用图表示学习的方法在KG中分别学习目标用户(user)或项目(item)的表示,虽然都取得了一定的效果,但是前者没有充分捕获用户-项目(user-item)在KG上的结构信息,后者在产生嵌入(embedding)表示的过程中忽略了user和item的相互影响。为了弥补上述方法的不足,提出了一种联合学习用户端和项目端知识图谱(User-end and Item-end Knowledge Graph,UIKG)的新模型。该模型通过挖掘用户和项目在各自KG中的关联属性信息,并通过联合学习有效地捕获用户的个性化偏好与项目之间的关联性。具体的操作步骤是,利用基于图卷积神经网络的方法从用户知识图谱中学习用户表示向量,再将用户表示向量引入项目知识图谱中联合学习得到项目表示向量,实现用户端KG和项目端KG的无缝统一,最后通过多层感知器进行偏好预测,得到用户对项目的偏好概率,从而更有效地挖掘KG中的高阶结构信息和语义信息来捕获用户的个性化偏好。在公开数据集上的实验结果表明,与基线方法相比,UIKG在Recall@K指标上提高了2.5%~13.6%,在AUC和F1指标上提高了0.4%~5.8%。
中图分类号:
[1]LIAN D,ZHENG V W,XIE X,et al.Collaborative filteringmeets next check-in location prediction[C]//The Web Conference.2013:231-232. [2]RENDLE S,GANTNER Z,FREUDENTHALER C,et al.Fast context-aware recommendations with factorization machines[C]//International ACM Sigir Conference on Research and Development in Information Retrieval.2011:635-644. [3]GAO H,TANG J,HU X,et al.Content-aware point of interest recommendation on location-based social networks[C]//National Conference on Artificial Intelligence.2015:1721-1727. [4]HUANG J,ZHAO W X,DOU H,et al.Improving Sequential Recommendation with Knowledge-Enhanced Memory Networks[C]//International ACM Sigir Conference on Research and Development in Information Retrieval.2018:505-514. [5]WANG H,ZHANG F,XIE X,et al.DKN:Deep Knowledge-Aware Network for News Recommendation[C]//The Web Conference.2018:1835-1844. [6]ZHANG J,SHI X,ZHAO S,et al.STAR-GCN:Stacked and Reconstructed Graph Convolutional Networks for Recommender Systems[C]//International Joint Conference on Artificial Intelligence.2019:4264-4270. [7]GAO H,TANG J,HU X,et al.Content-aware point of interest recommendation on location-based social networks[C]//National Conference on Artificial Intelligence.2015:1721-1727. [8]YU X,REN X,SUN Y,et al.Personalized entity recommendation:a heterogeneous information network approach[C]//Web Search and Data Mining.2014:283-292. [9]ZHAO H,YAO Q,LI J,et al.Meta-Graph Based Recommendation Fusion over Heterogeneous Information Networks[C]//Knowledge Discovery and Data Mining.2017:635-644. [10]CHEN X,XU H,ZHANG Y,et al.Sequential Recommendation with User Memory Networks[C]//Web Search and Data Mining.2018:108-116. [11]HE X,CHUA T.Neural Factorization Machines for Sparse Predictive Analytics[C]//International ACM Sigir Conference on Research and Development in Information Retrieval.2017:355-364. [12]HE X,HE Z,DU X,et al.Adversarial Personalized Ranking for Recommendation[C]//International ACM Sigir Conference on Research and Development in Information Retrieval.2018:355-364. [13]YE Z,ZHAO H,ZHANG K,et al.Improved DeepWalk Algorithm Based on Preference Random Walk[C]//International Conference Natural Language Processing.2019:265-276. [14]LAZARIDOU A,BARONI M.Combining Language and Vision with a Multimodal Skip-gram Model[J].arXiv:1501.02598v3,2015. [15]TANG J,QU M,WANG M,et al.LINE:Large-scale Information Network Embedding[C]//The Web Conference.2015:1067-1077. [16]GROVER A,LESKOVEC J.node2vec:Scalable Feature Learning for Networks[C]//Knowledge Discovery and Data Mining.2016:855-864. [17]LE Q V,MIKOLOV T.Distributed Representations of Sen-tences and Documents[C]//International Conference on Machine Learning.2014:1188-1196. [18]BORDES A,USUNIER N,GARCIADURAN A,et al.Translating Embeddings for Modeling Multi-relational Data[C]//Neural Information Processing Systems.2013:2787-2795. [19]MOUSSA H,CHOUCHENE B,GRIES T,et al.Growth of ZnO Nanorods on Graphitic Carbon Nitride GCN Sheets for the Preparation of Photocatalysts with High Visible‐Light Activity[J].Chemcatchem,2018,10(21):4973-4983. [20]WANG X,WANG D X,XU C R,et al.Explainable Reasoning over Knowledge Graphs for Recommendation[J].arXiv:1811.04540v1,2018. [21]YING R,HE R,CHEN K,et al.Graph Convolutional Neural Networks for Web-Scale Recommender Systems[C]//Knowledge Discovery and Data Mining.2018:974-983. [22]CHAMI I,YING R,RE C,et al.Hyperbolic Graph Convolutional Neural Networks[J].Advances in Neural Information Processing Systems,2019,32:4869-4880. [23]ZHANG F,YUAN N J,LIAN D,et al.Collaborative Knowledge Base Embedding for Recommender Systems[C]//Knowledge Discovery and Data Mining.2016:353-362. [24]GUO S,WANG Q,WANG B,et al.Semantically SmoothKnowledge Graph Embedding[C]//International Joint Conference on Natural Language Processing.2015:84-94. [25]WANG H,ZHANG F,WANG J,et al.RippleNet:Propagating User Preferences on the Knowledge Graph for Recommender Systems[C]//Conference on Information and Knowledge Management.2018:417-426. [26]WANG H,ZHAO M,XIE X,et al.Knowledge Graph Convolutional Networks for Recommender Systems[C]//The Web Conference.2019:3307-3313. [27]WANG X,HE X,CAO Y,et al.KGAT:Knowledge Graph Attention Network for Recommendation[C]//Knowledge Discovery and Data Mining.2019:950-958. |
[1] | 徐涌鑫, 赵俊峰, 王亚沙, 谢冰, 杨恺. 时序知识图谱表示学习 Temporal Knowledge Graph Representation Learning 计算机科学, 2022, 49(9): 162-171. https://doi.org/10.11896/jsjkx.220500204 |
[2] | 饶志双, 贾真, 张凡, 李天瑞. 基于Key-Value关联记忆网络的知识图谱问答方法 Key-Value Relational Memory Networks for Question Answering over Knowledge Graph 计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277 |
[3] | 吴子仪, 李邵梅, 姜梦函, 张建朋. 基于自注意力模型的本体对齐方法 Ontology Alignment Method Based on Self-attention 计算机科学, 2022, 49(9): 215-220. https://doi.org/10.11896/jsjkx.210700190 |
[4] | 孔世明, 冯永, 张嘉云. 融合知识图谱的多层次传承影响力计算与泛化研究 Multi-level Inheritance Influence Calculation and Generalization Based on Knowledge Graph 计算机科学, 2022, 49(9): 221-227. https://doi.org/10.11896/jsjkx.210700144 |
[5] | 秦琪琦, 张月琴, 王润泽, 张泽华. 基于知识图谱的层次粒化推荐方法 Hierarchical Granulation Recommendation Method Based on Knowledge Graph 计算机科学, 2022, 49(8): 64-69. https://doi.org/10.11896/jsjkx.210600111 |
[6] | 檀莹莹, 王俊丽, 张超波. 基于图卷积神经网络的文本分类方法研究综述 Review of Text Classification Methods Based on Graph Convolutional Network 计算机科学, 2022, 49(8): 205-216. https://doi.org/10.11896/jsjkx.210800064 |
[7] | 李宗民, 张玉鹏, 刘玉杰, 李华. 基于可变形图卷积的点云表征学习 Deformable Graph Convolutional Networks Based Point Cloud Representation Learning 计算机科学, 2022, 49(8): 273-278. https://doi.org/10.11896/jsjkx.210900023 |
[8] | 王杰, 李晓楠, 李冠宇. 基于自适应注意力机制的知识图谱补全算法 Adaptive Attention-based Knowledge Graph Completion 计算机科学, 2022, 49(7): 204-211. https://doi.org/10.11896/jsjkx.210400129 |
[9] | 马瑞新, 李泽阳, 陈志奎, 赵亮. 知识图谱推理研究综述 Review of Reasoning on Knowledge Graph 计算机科学, 2022, 49(6A): 74-85. https://doi.org/10.11896/jsjkx.210100122 |
[10] | 邓凯, 杨频, 李益洲, 杨星, 曾凡瑞, 张振毓. 一种可快速迁移的领域知识图谱构建方法 Fast and Transmissible Domain Knowledge Graph Construction Method 计算机科学, 2022, 49(6A): 100-108. https://doi.org/10.11896/jsjkx.210900018 |
[11] | 杜晓明, 袁清波, 杨帆, 姚奕, 蒋祥. 军事指控保障领域命名实体识别语料库的构建 Construction of Named Entity Recognition Corpus in Field of Military Command and Control Support 计算机科学, 2022, 49(6A): 133-139. https://doi.org/10.11896/jsjkx.210400132 |
[12] | 熊中敏, 舒贵文, 郭怀宇. 融合用户偏好的图神经网络推荐模型 Graph Neural Network Recommendation Model Integrating User Preferences 计算机科学, 2022, 49(6): 165-171. https://doi.org/10.11896/jsjkx.210400276 |
[13] | 钟将, 尹红, 张剑. 基于学术知识图谱的辅助创新技术研究 Academic Knowledge Graph-based Research for Auxiliary Innovation Technology 计算机科学, 2022, 49(5): 194-199. https://doi.org/10.11896/jsjkx.210400195 |
[14] | 李子仪, 周夏冰, 王中卿, 张民. 基于用户关联的立场检测 Stance Detection Based on User Connection 计算机科学, 2022, 49(5): 221-226. https://doi.org/10.11896/jsjkx.210400135 |
[15] | 高越, 傅湘玲, 欧阳天雄, 陈松龄, 闫晨巍. 基于时空自适应图卷积神经网络的脑电信号情绪识别 EEG Emotion Recognition Based on Spatiotemporal Self-Adaptive Graph ConvolutionalNeural Network 计算机科学, 2022, 49(4): 30-36. https://doi.org/10.11896/jsjkx.210900200 |
|