基于改进DeeplabV3+的地物分类方法研究

计算机科学 ›› 2021, Vol. 48 ›› Issue (11A): 382-385.doi: 10.11896/jsjkx.201100184

• 图像处理& 多媒体技术 • 上一篇    下一篇

基于改进DeeplabV3+的地物分类方法研究

朱戎, 叶宽, 杨博, 谢欢, 赵蕾   

  1. 国网北京电科院 北京100000
  • 出版日期:2021-11-10 发布日期:2021-11-12
  • 通讯作者: 朱戎(smart_3d@126.com)

Feature Classification Method Based on Improved DeeplabV3+

ZHU Rong, YE Kuan, YANG Bo, XIE Huan, ZHAO Lei   

  1. Beijing Institute of Electrical Technology of State Grid,Beijing 100000,China
  • Online:2021-11-10 Published:2021-11-12
  • About author:ZHU Rong,master,engineer.His main research interests include power safety management and so on.

摘要: 原始DeeplabV3+算法对无人机航拍图像中的地物边缘分割不够准确,对道路的分割存在不连续的情况。因此,针对这些问题,文中对DeeplabV3+算法进行了改进。首先,在编码阶段进行特征融合,增强浅层特征图的语义信息;其次,在分割网络结构中添加边界提取分支模块,并采用Canny边缘检测算法提取真实的边界信息进行监督训练,使网络对地物边缘的分割更为精细;最后,在网络的解码阶段,融合更多的浅层特征。实验结果表明,所提方法的mIoU值为80.92%,比DeeplabV3+算法提升了6.35%,能够有效进行地物分类。

关键词: DeeplabV3+, 边缘检测, 地物分类, 遥感图像, 语义分割

Abstract: The original DeeplabV3+ algorithm is not accurate enough for the edge segmentation of UAV aerial images,and the road segmentation is discontinuous.Therefore,in order to solve these problems,this paper improves the DeeplabV3+ algorithm.Firstly,the feature fusion is carried out in the coding stage to enhance the semantic information of the shallow feature map.Secondly,the boundary extraction branch module is added to the segmentation network structure,and Canny edge detection algorithm is used to extract the real boundary information for supervision training,so that the network can segment the edge of ground objects.Finally,in the decoding stage of the network,more shallow features are fused.The experimental results show that the mIoU value of the proposed method is 80.92%,which is 6.35% higher than that of the DeeplabV3+ algorithm,and can effectively classify the ground objects.

Key words: DeeplabV3+, Edge detection, Land cover classification, Remote sensing image, Semantic segmentation

中图分类号: 

  • TP274
[1]HAN W T,GUO C C,ZHANG L Y,et al.Classification Methodof Land Cover and Irrigated Farm Land Use Based on UAV Remote Sensing in Irrigation[J/OL].Transactions of teh Chinese Society for Agricultural Machinery,2016,47(11):270-277.
[2]KUANG H Y,WU J J.Survey of Image Semantic SegmentationBased on Deep Learning[J].Computer Engineering and Applications,2019,55(19):12-21,42,
[3]WANG E D,QI K,LI X P,et al.Semantic Segmentation of Remote Sensing Image Based on Neural Network[J].Acta Optica Sinica,2019,39(12):93-104.
[4]LONG J,SHELHAMER,DARRELL T.Fully convolutionalnetworks for semantic segmentation[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2014,39(4):640-651.
[5]OLAF R,PHILIPP F,THOMAS B.U-Net:convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.2015:234-241.
[6]RONNERBERGER O,FISHER P,BROX T.U-Net:Convolutional networks for biomedical image segmentation[C]//Inter.Conf.On Medical Image Computing and Computer Assited Invervention.2015:234-241.
[7]REN F L,HE X,WEI Z H,et al.Semantic segmentation based on DeepLabV3+ and superpixel optimization[J].Optics and Precision Engineering,2019,27(12):2722-2729.
[8]CHOLLET F.Xception:deep learning with depthwise separable convolutions [J/OL].Computer Vision and Pattern Recognition,2017.arXiv:1610.02357.https://arxiv.org/pdf/1610.02357.pdf.
[9]CHEN L C,PAPANDREOU G,SCHROFF F,et al.Rethinking atrous convolution for semantic image segmentation [J/OL].Computer Vision and Pattern Recognition,2017.arXiv:1706.05587.https://arxiv.org/pdf/1706.05587.pdf.
[10]CHEN L,ZHU Y,PAPANDREOU G,et al.Encoder-decoderwith atrous separable convolution for semantic image segmentation [J/OL].Computer Vision and Pattern Recognition,2018.arXiv:1802.02611.https://arxiv.org/pdf/1802.02611.pdf.
[11]REN F L,HE X,WEI Z H,et al.Semantic segmentation based on DeepLabV3+ and superpixel optimization[J].Optics and Precision Engineering,2019,27(12):2722-2729.
[12]TIAN Q C,MENG Y.An Image Semantic Segmentation Algorithm with Multi-scal Feature Fusion and Enhancement[J/OL].Computer Engineering andApplications:1-13.[2020-10-20].http://kns.cnki.net/kcms/detail/11.2127.TP.20200821.1716.004.html.
[13]ZHANG W,ZHENG K,TANG P,et al.Land cover classification with features extracted by deep convolutional neural network[J].Journal of Image and Graphics,2017,22(8):1144-1153.
[14]LIN T Y,GOYAL P,GIRSHICK R,et al.Focal loss for dense object detection[C]//2017 IEEE Inter.Conf.on Computer Vision(ICCV).2017:2999-3007.
[15]FENG X J,SUN S J.Semantic segmentation method integrating multilevel features[J/OL].Application Research of Computers:1-5.[2020-10-27].https://doi.org/10.19734/j.issn.1001-3695.2019.07.0249.
[1] 王坤姝, 张泽辉, 高铁杠.
基于Hachimoji DNA和QR分解的遥感图像可逆隐藏算法
Reversible Hidden Algorithm for Remote Sensing Images Based on Hachimoji DNA and QR Decomposition
计算机科学, 2022, 49(8): 127-135. https://doi.org/10.11896/jsjkx.210700216
[2] 程成, 降爱莲.
基于多路径特征提取的实时语义分割方法
Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction
计算机科学, 2022, 49(7): 120-126. https://doi.org/10.11896/jsjkx.210500157
[3] 祝文韬, 兰先超, 罗唤霖, 岳彬, 汪洋.
改进Faster R-CNN的光学遥感飞机目标检测
Remote Sensing Aircraft Target Detection Based on Improved Faster R-CNN
计算机科学, 2022, 49(6A): 378-383. https://doi.org/10.11896/jsjkx.210300121
[4] 胡伏原, 万新军, 沈鸣飞, 徐江浪, 姚睿, 陶重犇.
深度卷积神经网络图像实例分割方法研究进展
Survey Progress on Image Instance Segmentation Methods of Deep Convolutional Neural Network
计算机科学, 2022, 49(5): 10-24. https://doi.org/10.11896/jsjkx.210200038
[5] 陈贵强, 何军.
自然场景下遥感图像超分辨率重建算法研究
Study on Super-resolution Reconstruction Algorithm of Remote Sensing Images in Natural Scene
计算机科学, 2022, 49(2): 116-122. https://doi.org/10.11896/jsjkx.210700095
[6] 袁磊, 刘紫燕, 朱明成, 马珊珊, 陈霖周廷.
融合改进密集连接和分布排序损失的遥感图像检测
Improved YOLOv3 Remote Sensing Target Detection Based on Improved Dense Connection and Distributional Ranking Loss
计算机科学, 2021, 48(9): 168-173. https://doi.org/10.11896/jsjkx.200800001
[7] 王施云, 杨帆.
基于U-Net特征融合优化策略的遥感影像语义分割方法
Remote Sensing Image Semantic Segmentation Method Based on U-Net Feature Fusion Optimization Strategy
计算机科学, 2021, 48(8): 162-168. https://doi.org/10.11896/jsjkx.200700182
[8] 张曼, 李杰, 朱新忠, 沈霁, 成昊天.
基于改进DCGAN算法的遥感数据集增广方法
Augmentation Technology of Remote Sensing Dataset Based on Improved DCGAN Algorithm
计算机科学, 2021, 48(6A): 80-84. https://doi.org/10.11896/jsjkx.200700185
[9] 宋昱, 孙文赟.
改进非线性结构张量的含噪图像边缘检测
Edge Detection in Images Corrupted with Noise Based on Improved Nonlinear Structure Tensor
计算机科学, 2021, 48(6): 138-144. https://doi.org/10.11896/jsjkx.200600017
[10] 袁星星, 吴秦.
基于显著性特征和角度信息的遥感图像目标检测
Object Detection in Remote Sensing Images Based on Saliency Feature and Angle Information
计算机科学, 2021, 48(4): 174-179. https://doi.org/10.11896/jsjkx.191200027
[11] 詹瑞, 雷印杰, 陈训敏, 叶书函.
基于多重差异特征网络的街景变化检测
Street Scene Change Detection Based on Multiple Difference Features Network
计算机科学, 2021, 48(2): 142-147. https://doi.org/10.11896/jsjkx.200500158
[12] 王鑫, 张昊宇, 凌诚.
基于U-Net优化的SAR遥感图像语义分割
Semantic Segmentation of SAR Remote Sensing Image Based on U-Net Optimization
计算机科学, 2021, 48(11A): 376-381. https://doi.org/10.11896/jsjkx.210300260
[13] 赵佳琦, 王瀚正, 周勇, 张迪, 周子渊.
基于多尺度与注意力特征增强的遥感图像描述生成方法
Remote Sensing Image Description Generation Method Based on Attention and Multi-scale Feature Enhancement
计算机科学, 2021, 48(1): 190-196. https://doi.org/10.11896/jsjkx.200600076
[14] 任天赐, 黄向生, 丁伟利, 安重阳, 翟鹏博.
全局双边网络的语义分割算法
Global Bilateral Segmentation Network for Segmantic Segmentation
计算机科学, 2020, 47(6A): 161-165. https://doi.org/10.11896/JsJkx.191200127
[15] 张曼, 李杰, 丁荣莉, 成昊天, 沈霁.
基于改进YOLO-V2算法的遥感图像目标检测技术研究
Remote Sensing Image ObJect Detection Technology Based on Improved YOLO-V2 Algorithm
计算机科学, 2020, 47(6A): 176-180. https://doi.org/10.11896/JsJkx.191100206
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!