计算机科学 ›› 2021, Vol. 48 ›› Issue (11A): 382-385.doi: 10.11896/jsjkx.201100184
朱戎, 叶宽, 杨博, 谢欢, 赵蕾
ZHU Rong, YE Kuan, YANG Bo, XIE Huan, ZHAO Lei
摘要: 原始DeeplabV3+算法对无人机航拍图像中的地物边缘分割不够准确,对道路的分割存在不连续的情况。因此,针对这些问题,文中对DeeplabV3+算法进行了改进。首先,在编码阶段进行特征融合,增强浅层特征图的语义信息;其次,在分割网络结构中添加边界提取分支模块,并采用Canny边缘检测算法提取真实的边界信息进行监督训练,使网络对地物边缘的分割更为精细;最后,在网络的解码阶段,融合更多的浅层特征。实验结果表明,所提方法的mIoU值为80.92%,比DeeplabV3+算法提升了6.35%,能够有效进行地物分类。
中图分类号:
[1]HAN W T,GUO C C,ZHANG L Y,et al.Classification Methodof Land Cover and Irrigated Farm Land Use Based on UAV Remote Sensing in Irrigation[J/OL].Transactions of teh Chinese Society for Agricultural Machinery,2016,47(11):270-277. [2]KUANG H Y,WU J J.Survey of Image Semantic SegmentationBased on Deep Learning[J].Computer Engineering and Applications,2019,55(19):12-21,42, [3]WANG E D,QI K,LI X P,et al.Semantic Segmentation of Remote Sensing Image Based on Neural Network[J].Acta Optica Sinica,2019,39(12):93-104. [4]LONG J,SHELHAMER,DARRELL T.Fully convolutionalnetworks for semantic segmentation[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2014,39(4):640-651. [5]OLAF R,PHILIPP F,THOMAS B.U-Net:convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.2015:234-241. [6]RONNERBERGER O,FISHER P,BROX T.U-Net:Convolutional networks for biomedical image segmentation[C]//Inter.Conf.On Medical Image Computing and Computer Assited Invervention.2015:234-241. [7]REN F L,HE X,WEI Z H,et al.Semantic segmentation based on DeepLabV3+ and superpixel optimization[J].Optics and Precision Engineering,2019,27(12):2722-2729. [8]CHOLLET F.Xception:deep learning with depthwise separable convolutions [J/OL].Computer Vision and Pattern Recognition,2017.arXiv:1610.02357.https://arxiv.org/pdf/1610.02357.pdf. [9]CHEN L C,PAPANDREOU G,SCHROFF F,et al.Rethinking atrous convolution for semantic image segmentation [J/OL].Computer Vision and Pattern Recognition,2017.arXiv:1706.05587.https://arxiv.org/pdf/1706.05587.pdf. [10]CHEN L,ZHU Y,PAPANDREOU G,et al.Encoder-decoderwith atrous separable convolution for semantic image segmentation [J/OL].Computer Vision and Pattern Recognition,2018.arXiv:1802.02611.https://arxiv.org/pdf/1802.02611.pdf. [11]REN F L,HE X,WEI Z H,et al.Semantic segmentation based on DeepLabV3+ and superpixel optimization[J].Optics and Precision Engineering,2019,27(12):2722-2729. [12]TIAN Q C,MENG Y.An Image Semantic Segmentation Algorithm with Multi-scal Feature Fusion and Enhancement[J/OL].Computer Engineering andApplications:1-13.[2020-10-20].http://kns.cnki.net/kcms/detail/11.2127.TP.20200821.1716.004.html. [13]ZHANG W,ZHENG K,TANG P,et al.Land cover classification with features extracted by deep convolutional neural network[J].Journal of Image and Graphics,2017,22(8):1144-1153. [14]LIN T Y,GOYAL P,GIRSHICK R,et al.Focal loss for dense object detection[C]//2017 IEEE Inter.Conf.on Computer Vision(ICCV).2017:2999-3007. [15]FENG X J,SUN S J.Semantic segmentation method integrating multilevel features[J/OL].Application Research of Computers:1-5.[2020-10-27].https://doi.org/10.19734/j.issn.1001-3695.2019.07.0249. |
[1] | 王坤姝, 张泽辉, 高铁杠. 基于Hachimoji DNA和QR分解的遥感图像可逆隐藏算法 Reversible Hidden Algorithm for Remote Sensing Images Based on Hachimoji DNA and QR Decomposition 计算机科学, 2022, 49(8): 127-135. https://doi.org/10.11896/jsjkx.210700216 |
[2] | 程成, 降爱莲. 基于多路径特征提取的实时语义分割方法 Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction 计算机科学, 2022, 49(7): 120-126. https://doi.org/10.11896/jsjkx.210500157 |
[3] | 祝文韬, 兰先超, 罗唤霖, 岳彬, 汪洋. 改进Faster R-CNN的光学遥感飞机目标检测 Remote Sensing Aircraft Target Detection Based on Improved Faster R-CNN 计算机科学, 2022, 49(6A): 378-383. https://doi.org/10.11896/jsjkx.210300121 |
[4] | 胡伏原, 万新军, 沈鸣飞, 徐江浪, 姚睿, 陶重犇. 深度卷积神经网络图像实例分割方法研究进展 Survey Progress on Image Instance Segmentation Methods of Deep Convolutional Neural Network 计算机科学, 2022, 49(5): 10-24. https://doi.org/10.11896/jsjkx.210200038 |
[5] | 陈贵强, 何军. 自然场景下遥感图像超分辨率重建算法研究 Study on Super-resolution Reconstruction Algorithm of Remote Sensing Images in Natural Scene 计算机科学, 2022, 49(2): 116-122. https://doi.org/10.11896/jsjkx.210700095 |
[6] | 袁磊, 刘紫燕, 朱明成, 马珊珊, 陈霖周廷. 融合改进密集连接和分布排序损失的遥感图像检测 Improved YOLOv3 Remote Sensing Target Detection Based on Improved Dense Connection and Distributional Ranking Loss 计算机科学, 2021, 48(9): 168-173. https://doi.org/10.11896/jsjkx.200800001 |
[7] | 王施云, 杨帆. 基于U-Net特征融合优化策略的遥感影像语义分割方法 Remote Sensing Image Semantic Segmentation Method Based on U-Net Feature Fusion Optimization Strategy 计算机科学, 2021, 48(8): 162-168. https://doi.org/10.11896/jsjkx.200700182 |
[8] | 张曼, 李杰, 朱新忠, 沈霁, 成昊天. 基于改进DCGAN算法的遥感数据集增广方法 Augmentation Technology of Remote Sensing Dataset Based on Improved DCGAN Algorithm 计算机科学, 2021, 48(6A): 80-84. https://doi.org/10.11896/jsjkx.200700185 |
[9] | 宋昱, 孙文赟. 改进非线性结构张量的含噪图像边缘检测 Edge Detection in Images Corrupted with Noise Based on Improved Nonlinear Structure Tensor 计算机科学, 2021, 48(6): 138-144. https://doi.org/10.11896/jsjkx.200600017 |
[10] | 袁星星, 吴秦. 基于显著性特征和角度信息的遥感图像目标检测 Object Detection in Remote Sensing Images Based on Saliency Feature and Angle Information 计算机科学, 2021, 48(4): 174-179. https://doi.org/10.11896/jsjkx.191200027 |
[11] | 詹瑞, 雷印杰, 陈训敏, 叶书函. 基于多重差异特征网络的街景变化检测 Street Scene Change Detection Based on Multiple Difference Features Network 计算机科学, 2021, 48(2): 142-147. https://doi.org/10.11896/jsjkx.200500158 |
[12] | 王鑫, 张昊宇, 凌诚. 基于U-Net优化的SAR遥感图像语义分割 Semantic Segmentation of SAR Remote Sensing Image Based on U-Net Optimization 计算机科学, 2021, 48(11A): 376-381. https://doi.org/10.11896/jsjkx.210300260 |
[13] | 赵佳琦, 王瀚正, 周勇, 张迪, 周子渊. 基于多尺度与注意力特征增强的遥感图像描述生成方法 Remote Sensing Image Description Generation Method Based on Attention and Multi-scale Feature Enhancement 计算机科学, 2021, 48(1): 190-196. https://doi.org/10.11896/jsjkx.200600076 |
[14] | 任天赐, 黄向生, 丁伟利, 安重阳, 翟鹏博. 全局双边网络的语义分割算法 Global Bilateral Segmentation Network for Segmantic Segmentation 计算机科学, 2020, 47(6A): 161-165. https://doi.org/10.11896/JsJkx.191200127 |
[15] | 张曼, 李杰, 丁荣莉, 成昊天, 沈霁. 基于改进YOLO-V2算法的遥感图像目标检测技术研究 Remote Sensing Image ObJect Detection Technology Based on Improved YOLO-V2 Algorithm 计算机科学, 2020, 47(6A): 176-180. https://doi.org/10.11896/JsJkx.191100206 |
|