基于多粒度粗糙直觉犹豫模糊集的最优粒度选择方法

计算机科学 ›› 2021, Vol. 48 ›› Issue (10): 98-106.doi: 10.11896/jsjkx.200800074

• 人工智能* 上一篇    下一篇

基于多粒度粗糙直觉犹豫模糊集的最优粒度选择方法

薛占熬, 孙冰心, 侯昊东, 荆萌萌   

  1. 河南师范大学计算机与信息工程学院 河南 新乡453007
    “智慧商务与物联网技术”河南省工程实验室 河南 新乡453007
  • 收稿日期:2020-08-12 修回日期:2020-10-22 出版日期:2021-10-15 发布日期:2021-10-18
  • 通讯作者: 薛占熬(xuezhanao@163.com)
  • 基金资助:
    国家自然科学基金(62076089,61772176);河南省科技攻关项目(182102210078, 182102210362)

Optimal Granulation Selection Method Based on Multi-granulation Rough Intuitionistic Hesitant Fuzzy Sets

XUE Zhan-ao, SUN Bing-xin, HOU Hao-dong, JING Meng-meng   

  1. College of Computer and Information Engineering,Henan Normal University,Xinxiang,Henan 453007,China
    Engineering Lab of Henan Province for Intelligence Business & Internet of Things,Xinxiang,Henan 453007,China
  • Received:2020-08-12 Revised:2020-10-22 Online:2021-10-15 Published:2021-10-18
  • About author:XUE Zhan-ao,born in 1963,Ph.D,professor,is a senior member of China Artificial Intelligence.His main research interests include basic theory of artificial intelligence,rough sets theory,fuzzysets,and three-way decision theory.
  • Supported by:
    National Natural Science Foundation of China(62076089,61772176) and Scientific and Technological Project of Henan Province of China(182102210078,182102210362).

摘要: 为了对含有多属性的直觉犹豫模糊决策信息系统进行约简,获取最优粒度,运用多粒度粗糙集处理直觉犹豫模糊决策信息系统中的不确定信息,并对多粒度粗糙直觉犹豫模糊集的最优粒度选择方法进行了研究。首先,在直觉犹豫模糊集的基础上引入属性信息,给出粗糙直觉犹豫模糊集的概念,提出乐观、悲观多粒度粗糙直觉犹豫模糊集的下、上近似这4种模型,且研讨了它们的性质。其次,主要定义了基于悲观多粒度粗糙直觉犹豫模糊集下近似的粒度质量相似度和内、外粒度重要度的计算公式,设计了其最优粒度选择算法。最后,通过葡萄酒测评的案例,分别基于乐观、悲观多粒度粗糙直觉犹豫模糊集的下、上近似这4种情况,计算出最优粒度并进行了分析,验证了该算法在直觉犹豫模糊决策信息系统中的约简是有效的。

关键词: 粗糙集, 多粒度, 粒度重要度, 直觉犹豫模糊集, 最优粒度选择

Abstract: In order to obtain the optimal granulations after reduction from the intuitionistic hesitant fuzzy decision information system with multiple attributes,this paper deals with the uncertain information in this system from the perspective of multi-gra-nulation rough sets,and studies optimal granulation selection method based on multi-granulation rough intuitionistic hesitant fuzzy sets.Firstly,on the basis of intuitionistic hesitant fuzzy sets,attribute information is introduced,and the concept of rough intui-tionistic hesitant fuzzy sets is given.Then four upper and lower approximation models of optimistic and pessimistic multi-granulation rough intuitionistic hesitant fuzzy sets are proposed,and the related properties are discussed.Secondly,mainly based on the lower approximation of the pessimistic multi-granulation rough intuitionistic hesitant fuzzy set,this paper defines the granu-lation quality similarity degree and internal/external granulation importance degree,and the related algorithm of optimal granulation selection is designed.Finally,through the wine evaluation case,optimal granularities are calculated based on the four cases of optimistic and pessimistic multi-granulation rough intuitionistic hesitant fuzzy set's upper and lower approximation,then analyzes results.It is verified that algorithms are effective for the reduction of intuitionistic hesitant fuzzy decision information system.

Key words: Granulation importance degree, Intuitionistic hesitant fuzzy sets, Multi-granulation, Optimal granulation selection, Rough sets

中图分类号: 

  • TP181
[1]PAWLAK Z.Rough set[J].International Journal of Computer and Information Sciences,1982,11(5):341-356.
[2]THOMAS K V,NAIR L S.Rough intuitionistic fuzzy sets in alattice[J].International Mathematics Forum.2011,6(27):1327-1335.
[3]ZHANG X Y,MO Z W,XIONG F,et al.Comparative study of variable precision rough set model and graded rough set model[J].International Journal of Approximate Reasoning,2012,53(1):104-116.
[4]DOU H L,YANG X B,SONG X N,et al.Decision-theoreticrough set:a multicost strategy[J].Knowledge-Based Systems,2016,91:71-83.
[5]XUE Z A,SI X M,XUE T Y,et al.Multi-granulation covering rough intuitionistic fuzzy sets[J].Journal of Intelligent & Fuzzy Systems,2017,32(1):899-911.
[6]WANG Q,QIAN Y H,LIANG X Y,et al.Local neighborhood rough set[J].Knowledge-Based Systems,2018,153:53-64.
[7]QIAN Y H,LIANG J Y,YAO Y Y,et al.MGRS:A Multi-gra-nulation Rough Set[J].Information Sciences,2010,180(6):949-970.
[8]QIAN Y H,LIANG J Y,DANG C Y.Incomplete Multi-granula-tion Rough Set [J].IEEE Transactions on Systems Man and Cybernetics-Part A Systems and Humans,2010,40(2):420-431.
[9]WU W Z,LEUNG Y.Theory and applications of granular labelled partitions in multi-scale decision tables [J].Information Sciences,2011,181(18):3878-3897.
[10]WU W Z,LEUNG Y.Optimal scale selection for multi-scale de-cision tables [J].International Journal of Approximate Reaso-ning,2013,54(8):1107-1129.
[11]QIAN Y H,ZHANG H,SANG Y L,et al.Multigranulation decision-theoretic rough sets[J].International Journal of Approximate Reasoning,2014,55(1):225-237.
[12]LIN G P,QIAN Y H,LI J J.NMGRS:Neighborhood-based multigranulation rough sets[J].International Journal of Approximate Reasoning,2012,53(7):1080-1093.
[13]XUE Z A,LV M J,HAN D J,et al.Multi-granulation graded rough intuitionistic fuzzy sets models based on dominance relation[J].Symmetry,2018,10(10),446.
[14]LI J H,LI Y F,MI Y L,et al.Meso-granularity labeled method for multi-granularity formal concept analysis[J].Journal of Computer Research and Development,2020,57(2):447-458.
[15]TAN A H,SHI S W,WU W Z,et al.Granularity and entropy of intuitionistic fuzzy information and their applications[J].IEEE Transactions on Cybernetics,2020.DOI:10.1109/tcyb.2020.2973379.
[16]QIAN J,LIU C H,MIAO D Q,et al.Sequential three-way decisions via multi-granularity[J].Information Sciences,2020,507:606-629.
[17]XUE Z A,ZHAO L P,LIN S,et al.Three-way decision models based on multigranulation support intuitionistic fuzzy rough sets[J].International Journal of Approximate Reasoning,2020,124:147-172.
[18]ATANASSOV K T.Intuitionistic fuzzy sets[J].Fuzzy Sets and Systems,1986,20(1):87-96.
[19]ATANASSOV K T.More on intuitionistic fuzzy sets[J].Fuzzy Sets and Systems,1989,33(1):37-45.
[20]TORRA V.Hesitant fuzzy sets[J].International Journal of Intelligent Systems,2010,25(6):529-539.
[21]TORRA V,NARUKAWA Y.On hesitant fuzzy sets and decision[C]//2009 IEEE International Conference on Fuzzy Systems.IEEE,2009:1378-1382.
[22]ZHU B,XU Z S,XIA M M.Dual hesitant fuzzy sets[J].Journal of Applied Mathematics,2012,879629:1-13.
[23]PENG J J,WANG J Q,WU X H,et al.The fuzzy cross-entropy for intuitionistic hesitant fuzzy sets and their application in multi-criteria decision-making[J].International Journal of Systems Science,2015,46(13):2335-2350.
[24]SANG B B,ZHANG X Y,XU W H.Attribute Reduction ofRelative Knowledge Granularity in Intuitionistic Fuzzy Ordered Decision Table[J].Filomat,2018,32(5):1727-1736.
[25]SINGH S,SHREEVASTAVA S,SOM T,et al.Intuitionisticfuzzy quantifier and its application in feature selection[J].International Journal of Fuzzy Systems,2019,21(2):441-453.
[26]HUANG B,WU W Z,YAN J,et al.Inclusion measure-based multi-granulation decision-theoretic rough sets in multi-scale intuitionistic fuzzy information tables[J].Information Sciences,2020,507:421-448.
[27]ZHANG H D,HE Y P,MA W Y.An approximation reduction approach in multi-granulation hesitant fuzzy decision information system[J].Journal of Intelligent & Fuzzy Systems,2019,37(1):1555-1567.
[28]TAN J.Hesitant fuzzy attribute reduction of ordered information system[D].Chengdu:Xihua University,2019.
[29]XU Z S.Intuitionistic fuzzy aggregation operators[J].IEEETransactions on Fuzzy Systems,2007,15(6):1179-1187.
[30]XU Z S,XIA M M.Hesitant fuzzy entropy and cross-entropy and their use in multiattribute decision-making[J].Internatio-nal Journal of Intelligent Systems,2012,27(9):799-822.
[31]YANG X B,SONG X N,QI Y S,et al.Constructive and axiomatic approaches to hesitant fuzzy rough set[J].Soft Computing,2014,18(6):1067-1077.
[1] 秦琪琦, 张月琴, 王润泽, 张泽华.
基于知识图谱的层次粒化推荐方法
Hierarchical Granulation Recommendation Method Based on Knowledge Graph
计算机科学, 2022, 49(8): 64-69. https://doi.org/10.11896/jsjkx.210600111
[2] 程富豪, 徐泰华, 陈建军, 宋晶晶, 杨习贝.
基于顶点粒k步搜索和粗糙集的强连通分量挖掘算法
Strongly Connected Components Mining Algorithm Based on k-step Search of Vertex Granule and Rough Set Theory
计算机科学, 2022, 49(8): 97-107. https://doi.org/10.11896/jsjkx.210700202
[3] 张源, 康乐, 宫朝辉, 张志鸿.
基于Bi-LSTM的期货市场关联交易行为检测方法
Related Transaction Behavior Detection in Futures Market Based on Bi-LSTM
计算机科学, 2022, 49(7): 31-39. https://doi.org/10.11896/jsjkx.210400304
[4] 许思雨, 秦克云.
基于剩余格的模糊粗糙集的拓扑性质
Topological Properties of Fuzzy Rough Sets Based on Residuated Lattices
计算机科学, 2022, 49(6A): 140-143. https://doi.org/10.11896/jsjkx.210200123
[5] 方连花, 林玉梅, 吴伟志.
随机多尺度序决策系统的最优尺度选择
Optimal Scale Selection in Random Multi-scale Ordered Decision Systems
计算机科学, 2022, 49(6): 172-179. https://doi.org/10.11896/jsjkx.220200067
[6] 杨斐斐, 沈思妤, 申德荣, 聂铁铮, 寇月.
面向数据融合的多粒度数据溯源方法
Method on Multi-granularity Data Provenance for Data Fusion
计算机科学, 2022, 49(5): 120-128. https://doi.org/10.11896/jsjkx.210300092
[7] 陈于思, 艾志华, 张清华.
基于三角不等式判定和局部策略的高效邻域覆盖模型
Efficient Neighborhood Covering Model Based on Triangle Inequality Checkand Local Strategy
计算机科学, 2022, 49(5): 152-158. https://doi.org/10.11896/jsjkx.210300302
[8] 孙林, 黄苗苗, 徐久成.
基于邻域粗糙集和Relief的弱标记特征选择方法
Weak Label Feature Selection Method Based on Neighborhood Rough Sets and Relief
计算机科学, 2022, 49(4): 152-160. https://doi.org/10.11896/jsjkx.210300094
[9] 王子茵, 李磊军, 米据生, 李美争, 解滨.
基于误分代价的变精度模糊粗糙集属性约简
Attribute Reduction of Variable Precision Fuzzy Rough Set Based on Misclassification Cost
计算机科学, 2022, 49(4): 161-167. https://doi.org/10.11896/jsjkx.210500211
[10] 王志成, 高灿, 邢金明.
一种基于正域的三支近似约简
Three-way Approximate Reduction Based on Positive Region
计算机科学, 2022, 49(4): 168-173. https://doi.org/10.11896/jsjkx.210500067
[11] 薛占熬, 侯昊东, 孙冰心, 姚守倩.
带标记的不完备双论域模糊概率粗糙集中近似集动态更新方法
Label-based Approach for Dynamic Updating Approximations in Incomplete Fuzzy Probabilistic Rough Sets over Two Universes
计算机科学, 2022, 49(3): 255-262. https://doi.org/10.11896/jsjkx.201200042
[12] 胡艳丽, 童谭骞, 张啸宇, 彭娟.
融入自注意力机制的深度学习情感分析方法
Self-attention-based BGRU and CNN for Sentiment Analysis
计算机科学, 2022, 49(1): 252-258. https://doi.org/10.11896/jsjkx.210600063
[13] 王栋, 周大可, 黄有达, 杨欣.
基于多尺度多粒度特征的行人重识别
Multi-scale Multi-granularity Feature for Pedestrian Re-identification
计算机科学, 2021, 48(7): 238-244. https://doi.org/10.11896/jsjkx.200600043
[14] 李艳, 范斌, 郭劼, 林梓源, 赵曌.
基于k-原型聚类和粗糙集的属性约简方法
Attribute Reduction Method Based on k-prototypes Clustering and Rough Sets
计算机科学, 2021, 48(6A): 342-348. https://doi.org/10.11896/jsjkx.201000053
[15] 王政, 姜春茂.
一种基于三支决策的云任务调度优化算法
Cloud Task Scheduling Algorithm Based on Three-way Decisions
计算机科学, 2021, 48(6A): 420-426. https://doi.org/10.11896/jsjkx.201000023
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!