计算机科学 ›› 2020, Vol. 47 ›› Issue (9): 105-109.doi: 10.11896/jsjkx.190800030
庄世杰, 於志勇, 郭文忠, 黄昉菀
ZHUANG Shi-jie, YU Zhi-yong, GUO Wen-zhong, HUANG Fang-wan
摘要: 通过精确的电力负荷预测,智能电网可以提供比传统电网更高效、可靠和环保的电力服务。现实生活中,电力负荷数据往往存在着与历史数据较高的时间相关性,而传统的神经网络却很少关注它。近年来,循环神经网络(Recurrent Neural Network,RNN)由于可以很好地捕获在时间上距离很远的数据之间的相关性,因此在电力负荷预测中受到越来越多的关注。但是,由于RNN特有的自循环结构,当采用随时间的反向传播算法(Back-Propagation Through Time,BPTT)进行网络训练时,随着网络层数的增加,很容易发生梯度消失等问题,从而导致预测精度下降。目前已有多种解决梯度消失问题的RNN架构,如长短期记忆网络(Long Short-Term Memory,LSTM)和门控制单元(Gated Recurrent Unit,GRU),但其复杂的内部结构会增加训练时长。为了解决上述问题,文中首先对目前流行的各种RNN架构进行了研究和分析,其次结合最新提出的Zoneout技术,设计了一种跨时间尺度的分模块循环神经网络架构,重点研究了隐藏层模块的随机更新策略,不仅有效解决了梯度消失问题,而且大幅度减少了待训练的网络参数。基于基准数据集和实际负载数据集的实验结果表明,该结构可以获得比目前流行的RNN架构更好的性能。
中图分类号:
[1] DU D,CHEN R,LI X,et al.Malicious data deception attacksagainst power systems:A new case and its detection method[J].Transactions of the Institute of Measurement and Control,2019,41(6):1590-1599. [2] NATARAJA C,GORAWAR M B,SHILPA G N,et al.Shortterm load forecasting using time series analysis:a case study for Karnataka,India[J].Int.J.Eng.Sci.Innov.Technol,2012,1(2):45-53. [3] HERNÁNDEZ L,BALADRÓN C,AGUIAR J,et al.Artificial neural network for short-term load forecasting in distribution systems[J].Energies,2014,7(3):1576-1598. [4] SONG K B,BAEK Y S,HONG D H,et al.Short-term load forecasting for the holidays using fuzzy linear regression method[J].IEEE Transactions on Power Systems,2005,20(1):96-101. [5] WANG Z,YANG F,HO D W C,et al.Stochastic dynamic mo-deling of short gene expression time-series data[J].IEEE Tran-sactions on Manobioscience,2008,7(1):44-55. [6] WEI G,WANG Z,SHU H,et al.Robust filtering for gene expression time series data with variance constraints[J].International Journal of Computer Mathematics,2007,84(5):619-633. [7] AL-HAMADI H M,SOLIMAN S A.Short-term electric load forecasting based on Kalman filtering algorithm with moving window weather and load model[J].Electric Power Systems Research,2004,68(1):47-59. [8] RAHMAN S,BHATNAGAR R.An expert system based algorithm for short term load forecast[J].IEEE Transactions on Power Systems,1988,3(2):392-399. [9] WEI G,FENG G,WANG Z.Robust Control for Discrete-Time Fuzzy Systems With Infinite-Distributed Delays[J].IEEE Transactions on Fuzzy Systems,2008,17(1):224-232. [10] LEE C M,KO C N.Short-term load forecasting using liftingscheme and ARIMA models[J].Expert Systems with Applications,2011,38(5):5902-5911. [11] LIU Y,WANG Z,LIU X.Asymptotic stability for neural networks with mixed time-delays:The discrete-time case[J].Neural Networks,2009,22(1):67-74. [12] LIU L,SHEN B,WANG X.Research on kernel function of support vector machine[M]//Advanced Technologies,Embedded and Multimedia for Human-centric Computing.Springer,Dordrecht,2014:827-834. [13] BAI Y.Design of Cluster Analysis Model Based on Load CharacteristicCurve of Power Consumers [J].Journal of Chongqing University of Technology(Natural Science),2018, 32(12):181-185. [14] HIPPERT H S,PEDREIRA C E,SOUZA R C.Neural networks for short-term load forecasting:A review and evaluation[J].IEEE Transactions on Power Systems,2001,16(1):44-55. [15] LÄNGKVIST M,KARLSSON L,LOUTFI A.A review of unsupervised feature learning and deep learning for time-series modeling[J].Pattern Recognition Letters,2014,42:11-24. [16] BENGIO Y,SIMARD P,FRASCONI P.Learning long-term dependencies with gradient descent is difficult[J].IEEE Transactions on Neural Networks,1994,5(2):157-166. [17] HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural Computation,1997,9(8):1735-1780. [18] CHUNG J,GULCEHRE C,CHO K H,et al.Empirical evaluation of gated recurrent neural networks on sequence modeling[J].arXiv:1412.3555,2014. [19] KOUTNIK J,GREFF K,GOMEZ F,et al.A clockwork rnn[J].arXiv:1402.3511,2014. [20] CHANG S,ZHANG Y,HAN W,et al.Dilated recurrent neural networks[C]//Advances in Neural Information Processing Systems.2017:77-87. [21] LI S,LI W,COOK C,et al.Independently recurrent neural network (indrnn):Building a longer and deeper rnn[C]//Procee-dings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:5457-5466. [22] KRUEGER D,MAHARAJ T,KRAMÁR J,et al.Zoneout:Re-gularizing rnns by randomly preserving hidden activations[J].arXiv:1606.01305,2016. |
[1] | 彭双, 伍江江, 陈浩, 杜春, 李军. 基于注意力神经网络的对地观测卫星星上自主任务规划方法 Satellite Onboard Observation Task Planning Based on Attention Neural Network 计算机科学, 2022, 49(7): 242-247. https://doi.org/10.11896/jsjkx.210500093 |
[2] | 喻昕, 林植良. 解决一类非光滑伪凸优化问题的新型神经网络 Novel Neural Network for Dealing with a Kind of Non-smooth Pseudoconvex Optimization Problems 计算机科学, 2022, 49(5): 227-234. https://doi.org/10.11896/jsjkx.210400179 |
[3] | 安鑫, 代子彪, 李阳, 孙晓, 任福继. 基于BERT的端到端语音合成方法 End-to-End Speech Synthesis Based on BERT 计算机科学, 2022, 49(4): 221-226. https://doi.org/10.11896/jsjkx.210300071 |
[4] | 时雨涛, 孙晓. 一种会话理解模型的问题生成方法 Conversational Comprehension Model for Question Generation 计算机科学, 2022, 49(3): 232-238. https://doi.org/10.11896/jsjkx.210200153 |
[5] | 李昊, 曹书瑜, 陈亚青, 张敏. 基于注意力机制的用户轨迹识别模型 User Trajectory Identification Model via Attention Mechanism 计算机科学, 2022, 49(3): 308-312. https://doi.org/10.11896/jsjkx.210300231 |
[6] | 肖丁, 张玙璠, 纪厚业. 基于多头注意力机制的用户窃电行为检测 Electricity Theft Detection Based on Multi-head Attention Mechanism 计算机科学, 2022, 49(1): 140-145. https://doi.org/10.11896/jsjkx.210100177 |
[7] | 曾友渝, 谢强. 基于改进RNN和VAR的船舶设备故障预测方法 Fault Prediction Method Based on Improved RNN and VAR for Ship Equipment 计算机科学, 2021, 48(6): 184-189. https://doi.org/10.11896/jsjkx.200700117 |
[8] | 尹久, 池凯凯, 宦若虹. 基于ATT-DGRU的文本方面级别情感分析 Aspect-level Sentiment Analysis of Text Based on ATT-DGRU 计算机科学, 2021, 48(5): 217-224. https://doi.org/10.11896/jsjkx.200500076 |
[9] | 王习, 张凯, 李军辉, 孔芳, 张熠天. 联合自注意力和循环网络的图像标题生成 Generation of Image Caption of Joint Self-attention and Recurrent Neural Network 计算机科学, 2021, 48(4): 157-163. https://doi.org/10.11896/jsjkx.200300146 |
[10] | 陈千, 车苗苗, 郭鑫, 王素格. 一种循环卷积注意力模型的文本情感分类方法 Recurrent Convolution Attention Model for Sentiment Classification 计算机科学, 2021, 48(2): 245-249. https://doi.org/10.11896/jsjkx.200100078 |
[11] | 吕明琪, 洪照雄, 陈铁明. 一种融合时空关联与社会事件的交通流预测方法 Traffic Flow Forecasting Method Combining Spatio-Temporal Correlations and Social Events 计算机科学, 2021, 48(2): 264-270. https://doi.org/10.11896/jsjkx.200300098 |
[12] | 李亚男, 胡宇佳, 甘伟, 朱敏. 基于深度学习的miRNA靶位点预测研究综述 Survey on Target Site Prediction of Human miRNA Based on Deep Learning 计算机科学, 2021, 48(1): 209-216. https://doi.org/10.11896/jsjkx.191200111 |
[13] | 游兰, 韩雪薇, 何正伟, 肖丝雨, 何渡, 潘筱萌. 基于改进Seq2Seq的短时AIS轨迹序列预测模型 Improved Sequence-to-Sequence Model for Short-term Vessel Trajectory Prediction Using AIS Data Streams 计算机科学, 2020, 47(9): 169-174. https://doi.org/10.11896/jsjkx.190800060 |
[14] | 赫磊, 邵展鹏, 张剑华, 周小龙. 基于深度学习的行为识别算法综述 Review of Deep Learning-based Action Recognition Algorithms 计算机科学, 2020, 47(6A): 139-147. https://doi.org/10.11896/JsJkx.190900176 |
[15] | 张志扬, 张凤荔, 陈学勤, 王瑞锦. 基于分层注意力的信息级联预测模型 Information Cascade Prediction Model Based on Hierarchical Attention 计算机科学, 2020, 47(6): 201-209. https://doi.org/10.11896/jsjkx.200200117 |
|