计算机科学 ›› 2020, Vol. 47 ›› Issue (8): 137-143.doi: 10.11896/jsjkx.190700188
桑彬彬, 杨留中, 陈红梅, 王生武
SANG Bin-bin, YANG Liu-zhong, CHEN Hong-mei , WANG Sheng-wu
摘要: 在现实生活中, 数据不断累积增加, 原有准则和决策之间的相互关系也随之动态变化, 如何高效地计算属性约简是动态决策亟需解决的问题。增量更新方法可以有效地完成动态学习任务, 因为它可以在原有知识的基础上获取新的知识。文中利用优势粗糙集方法研究了在有优势关系的数据中添加单个对象时的增量属性约简方法。首先, 定义了优势集矩阵作为更新的目标, 用来计算新的优势条件熵;其次, 通过分析增加对象的3种不同情况, 提出了优势条件熵的增量学习机制;然后, 基于优势集矩阵设计了增量属性约简算法;最后, 对6种不同的UCI数据集进行实验, 用于比较增量和非增量算法的有效性和高效性。实验结果显示, 提出的增量属性约简算法不仅在有效性上与非增量属性约简算法保持一致, 而且在高效性上要远优于非增量属性约简算法。因此, 所提算法能有效且高效地完成动态优势关系数据中属性约简的任务。
中图分类号:
[1]PAWLAK Z.Rough sets [J].International Journal of Computer &Information Sciences, 1982, 11(5):341-356. [2]GRECO S, MATARAZZO B, SLOWINSKI R.Roughapproxi-mation of a preference relation by dominance relations [J].European Journal of Operational Research, 1999, 117(1):63-83. [3]DU W S, HU B Q.Dominance-based rough set approach to incomplete ordered information systems[J].InformationSciences, 2016, 346-347(C):106-129. [4]SUN B Z, MA W X.Rough approximation of a preference relation by multi-decision dominance for a multi-agent conflict ana-lysis problem [J].Information Sciences, 2015, 315(10):39-53. [5]HUANG B.Graded dominance interval-based fuzzy objective information systems [J].Knowledge-Based Systems, 2011, 24(7):1004-1012. [6]SONG P, LIANG J Y, QIAN Y H.A two-grade approach to ranking interval data [J].Knowledge-Based Systems, 2012, 27(3):234-244. [7]ZHANG H Y, YANG S Y.Feature selection and approximate reasoning of large-scale set-valued decision tables based on α -dominance-based quantitative rough sets[J].Information Scien-ces, 2017, 378 (1):328-347. [8]WANG F, LIANG J Y, DANG C Y.Attribute reduction for dynamic data sets [J].Applied Soft Computing, 2013, 13(1), 676-689. [9]LIANG J, WANG F, DANG C, et al.A Group Incremental Approach to Feature Selection Applying Rough Set Technique [J].IEEE Transactions on Knowledge and Data Engineering, 2014, 26(2):294-308. [10]JING Y G, LI T R, FUJITA H, et al.An incremental attribute reduction approach based on knowledge granularity with a multi-granulation view [J].Information Sciences, 2017, 411(10):23-38. [11]XIE X J, QIN X L.A novel incremental attribute reduction approach for dynamic incomplete decision systems [J].International Journal of Approximate Reasoning, 2018, 93:443-462. [12]HU Q H, GUO M Z, YU D R, et al.Information entropy for ordinal classification [J].Information Sciences, 2010, 53(6):1188-1200. [13]HU Q H, CHE X J, ZHANG L, et al.Rank entropy-based decision trees for monotonic classification [J].IEEE Transactions on Knowledge and Data Engineering, 2012, 24(11):2052-2064. [14]PAWLAK Z.Rough sets:Theoretical Aspects of Reasoningabout Data [M]∥Norwell, USA:Kluwer Academic Publishers, Boston, 1991. |
[1] | 刘冬梅, 徐洋, 吴泽彬, 刘倩, 宋斌, 韦志辉. 基于边框距离度量的增量目标检测方法 Incremental Object Detection Method Based on Border Distance Measurement 计算机科学, 2022, 49(8): 136-142. https://doi.org/10.11896/jsjkx.220100132 |
[2] | 沈少朋, 马洪江, 张智恒, 周相兵, 朱春满, 温佐承. 多元时序上状态转移模式的三支漂移检测 Three-way Drift Detection for State Transition Pattern on Multivariate Time Series 计算机科学, 2022, 49(4): 144-151. https://doi.org/10.11896/jsjkx.210600045 |
[3] | 王子茵, 李磊军, 米据生, 李美争, 解滨. 基于误分代价的变精度模糊粗糙集属性约简 Attribute Reduction of Variable Precision Fuzzy Rough Set Based on Misclassification Cost 计算机科学, 2022, 49(4): 161-167. https://doi.org/10.11896/jsjkx.210500211 |
[4] | 王志成, 高灿, 邢金明. 一种基于正域的三支近似约简 Three-way Approximate Reduction Based on Positive Region 计算机科学, 2022, 49(4): 168-173. https://doi.org/10.11896/jsjkx.210500067 |
[5] | 李艳, 范斌, 郭劼, 林梓源, 赵曌. 基于k-原型聚类和粗糙集的属性约简方法 Attribute Reduction Method Based on k-prototypes Clustering and Rough Sets 计算机科学, 2021, 48(6A): 342-348. https://doi.org/10.11896/jsjkx.201000053 |
[6] | 曾惠坤, 米据生, 李仲玲. 形式背景中概念及约简的动态更新方法 Dynamic Updating Method of Concepts and Reduction in Formal Context 计算机科学, 2021, 48(1): 131-135. https://doi.org/10.11896/jsjkx.200800018 |
[7] | 刘凌云, 钱辉, 邢红杰, 董春茹, 张峰. 一种基于Q-学习算法的增量分类模型 Incremental Classification Model Based on Q-learning Algorithm 计算机科学, 2020, 47(8): 171-177. https://doi.org/10.11896/jsjkx.190600150 |
[8] | 岳晓威, 彭莎, 秦克云. 基于面向对象(属性)概念格的形式背景属性约简方法 Attribute Reduction Methods of Formal Context Based on ObJect (Attribute) Oriented Concept Lattice 计算机科学, 2020, 47(6A): 436-439. https://doi.org/10.11896/JsJkx.191100011 |
[9] | 陈毅宁,陈红梅. 基于距离比值尺度的模糊粗糙集属性约简 Attribute Reduction of Fuzzy Rough Set Based on Distance Ratio Scale 计算机科学, 2020, 47(3): 67-72. https://doi.org/10.11896/jsjkx.190100196 |
[10] | 徐怡,唐静昕. 基于优化可辨识矩阵和改进差别信息树的属性约简算法 Attribute Reduction Algorithm Based on Optimized Discernibility Matrix and Improving Discernibility Information Tree 计算机科学, 2020, 47(3): 73-78. https://doi.org/10.11896/jsjkx.190500125 |
[11] | 侯成军,米据生,梁美社. 基于局部可调节多粒度粗糙集的属性约简 Attribute Reduction Based on Local Adjustable Multi-granulation Rough Set 计算机科学, 2020, 47(3): 87-91. https://doi.org/10.11896/jsjkx.190500162 |
[12] | 郭庆春,马建敏. 对偶区间集概念格上区间集协调集的判定方法 Judgment Methods of Interval-set Consistent Sets of Dual Interval-set Concept Lattices 计算机科学, 2020, 47(3): 98-102. https://doi.org/10.11896/jsjkx.190500098 |
[13] | 龙柄翰, 徐伟华, 张晓燕. 不协调目标信息系统中基于改进差别信息树的分布属性约简 Distribution Attribute Reduction Based on Improved Discernibility Information Tree in Inconsistent System 计算机科学, 2019, 46(6A): 115-119. |
[14] | 李艳, 张丽, 陈俊芬. 动态信息系统中基于序贯三支决策的属性约简方法 Attribute Reduction Method Based on Sequential Three-way Decisions in Dynamic Information Systems 计算机科学, 2019, 46(6A): 120-123. |
[15] | 李愚, 柴国钟, 卢纯福, 唐智川. 基于增量自适应学习的在线肌电手势识别 On-line sEMG Hand Gesture Recognition Based on Incremental Adaptive Learning 计算机科学, 2019, 46(4): 274-279. https://doi.org/10.11896/j.issn.1002-137X.2019.04.043 |
|