优势关系粗糙集增量属性约简算法

计算机科学 ›› 2020, Vol. 47 ›› Issue (8): 137-143.doi: 10.11896/jsjkx.190700188

• 数据库&大数据&数据科学 • 上一篇    下一篇

优势关系粗糙集增量属性约简算法

桑彬彬, 杨留中, 陈红梅, 王生武   

  1. 西南交通大学信息科学与技术学院 成都 611756
    西南交通大学云计算与智能技术高效重点实验室 成都 611756
  • 出版日期:2020-08-15 发布日期:2020-08-10
  • 通讯作者: 陈红梅(hmchen@swjtu.edu.cn)
  • 作者简介:sangbinbin@my.swjtu.edu.cn
  • 基金资助:
    国家自然科学基金(61572406, 61976182);四川省国际科技创新合作重点项目(2019YFH0097)

Incremental Attribute Reduction Algorithm in Dominance-based Rough Set

SANG Bin-bin, YANG Liu-zhong, CHEN Hong-mei , WANG Sheng-wu   

  1. Department of Information Science and Technology, Southwest Jiaotong University, Chengdu 611756, China
    Key Laboratory of Cloud Computing and Intelligent Technology, Southwest Jiaotong University, Chengdu 611756, China
  • Online:2020-08-15 Published:2020-08-10
  • About author:SANG Bin-bin, born in 1992, Ph.D, is a member of China Computer Federation.His main research interests include rough set and granular computing.
    CHEN Hong-mei, born in 1971, Ph.D, professor, Ph.D supervisor, is a member of China Computer Federation.Her main research interests include rough set and granular computing, and intelligent information processing.
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (61572406, 61976182) and Key Program for International S&T Cooperation of Sichuan Province (2019YFH0097).

摘要: 在现实生活中, 数据不断累积增加, 原有准则和决策之间的相互关系也随之动态变化, 如何高效地计算属性约简是动态决策亟需解决的问题。增量更新方法可以有效地完成动态学习任务, 因为它可以在原有知识的基础上获取新的知识。文中利用优势粗糙集方法研究了在有优势关系的数据中添加单个对象时的增量属性约简方法。首先, 定义了优势集矩阵作为更新的目标, 用来计算新的优势条件熵;其次, 通过分析增加对象的3种不同情况, 提出了优势条件熵的增量学习机制;然后, 基于优势集矩阵设计了增量属性约简算法;最后, 对6种不同的UCI数据集进行实验, 用于比较增量和非增量算法的有效性和高效性。实验结果显示, 提出的增量属性约简算法不仅在有效性上与非增量属性约简算法保持一致, 而且在高效性上要远优于非增量属性约简算法。因此, 所提算法能有效且高效地完成动态优势关系数据中属性约简的任务。

关键词: 动态决策, 优势粗糙集方法, 优势集矩阵, 增量学习, 属性约简

Abstract: In real life, as the data increase continuously, the relation between the original criteria and the decision making changes dynamically.How to effectively calculate the attribute reduction becomes an urgent problem to be solved in the dynamic decision making.Incremental updating method can effectively complete the dynamic learning task, because it can acquire new knowledge based on previous knowledge.This paper exploited the dominance-based rough set approach to study the incremental attribute reduction method when adding a single object to the data with dominant relation.Firstly, the dominant set matrix is defined as the target of the update to calculate the new dominant conditional entropy.Then, an incremental learning mechanism of the dominant conditional entropy is proposed by analyzing the three different situations of the adding object.After that, an incremental attribute reduction algorithm is designed based on the dominant set matrix.Finally, experiments on six different UCI data set are conducted to compare the effectiveness and efficiency of the incremental and non-incremental algorithms.The experimental results show that the incremental attribute reduction algorithm proposed in this paper is not only consistent with the non-incremental attribute reduction algorithm in term of effectiveness, but also far superior to the non-incremental attribute reduction algorithm in term of efficiency.Therefore, the proposed incremental algorithm can effectively and efficiently accomplish the task of attribute reduction in dynamical data with dominant relation.

Key words: Attribute reduction, Dominance-based rough set approach, Dominant set matrix, Dynamic decision-making, Incremental learning

中图分类号: 

  • TP301.6
[1]PAWLAK Z.Rough sets [J].International Journal of Computer &Information Sciences, 1982, 11(5):341-356.
[2]GRECO S, MATARAZZO B, SLOWINSKI R.Roughapproxi-mation of a preference relation by dominance relations [J].European Journal of Operational Research, 1999, 117(1):63-83.
[3]DU W S, HU B Q.Dominance-based rough set approach to incomplete ordered information systems[J].InformationSciences, 2016, 346-347(C):106-129.
[4]SUN B Z, MA W X.Rough approximation of a preference relation by multi-decision dominance for a multi-agent conflict ana-lysis problem [J].Information Sciences, 2015, 315(10):39-53.
[5]HUANG B.Graded dominance interval-based fuzzy objective information systems [J].Knowledge-Based Systems, 2011, 24(7):1004-1012.
[6]SONG P, LIANG J Y, QIAN Y H.A two-grade approach to ranking interval data [J].Knowledge-Based Systems, 2012, 27(3):234-244.
[7]ZHANG H Y, YANG S Y.Feature selection and approximate reasoning of large-scale set-valued decision tables based on α -dominance-based quantitative rough sets[J].Information Scien-ces, 2017, 378 (1):328-347.
[8]WANG F, LIANG J Y, DANG C Y.Attribute reduction for dynamic data sets [J].Applied Soft Computing, 2013, 13(1), 676-689.
[9]LIANG J, WANG F, DANG C, et al.A Group Incremental Approach to Feature Selection Applying Rough Set Technique [J].IEEE Transactions on Knowledge and Data Engineering, 2014, 26(2):294-308.
[10]JING Y G, LI T R, FUJITA H, et al.An incremental attribute reduction approach based on knowledge granularity with a multi-granulation view [J].Information Sciences, 2017, 411(10):23-38.
[11]XIE X J, QIN X L.A novel incremental attribute reduction approach for dynamic incomplete decision systems [J].International Journal of Approximate Reasoning, 2018, 93:443-462.
[12]HU Q H, GUO M Z, YU D R, et al.Information entropy for ordinal classification [J].Information Sciences, 2010, 53(6):1188-1200.
[13]HU Q H, CHE X J, ZHANG L, et al.Rank entropy-based decision trees for monotonic classification [J].IEEE Transactions on Knowledge and Data Engineering, 2012, 24(11):2052-2064.
[14]PAWLAK Z.Rough sets:Theoretical Aspects of Reasoningabout Data [M]∥Norwell, USA:Kluwer Academic Publishers, Boston, 1991.
[1] 刘冬梅, 徐洋, 吴泽彬, 刘倩, 宋斌, 韦志辉.
基于边框距离度量的增量目标检测方法
Incremental Object Detection Method Based on Border Distance Measurement
计算机科学, 2022, 49(8): 136-142. https://doi.org/10.11896/jsjkx.220100132
[2] 沈少朋, 马洪江, 张智恒, 周相兵, 朱春满, 温佐承.
多元时序上状态转移模式的三支漂移检测
Three-way Drift Detection for State Transition Pattern on Multivariate Time Series
计算机科学, 2022, 49(4): 144-151. https://doi.org/10.11896/jsjkx.210600045
[3] 王子茵, 李磊军, 米据生, 李美争, 解滨.
基于误分代价的变精度模糊粗糙集属性约简
Attribute Reduction of Variable Precision Fuzzy Rough Set Based on Misclassification Cost
计算机科学, 2022, 49(4): 161-167. https://doi.org/10.11896/jsjkx.210500211
[4] 王志成, 高灿, 邢金明.
一种基于正域的三支近似约简
Three-way Approximate Reduction Based on Positive Region
计算机科学, 2022, 49(4): 168-173. https://doi.org/10.11896/jsjkx.210500067
[5] 李艳, 范斌, 郭劼, 林梓源, 赵曌.
基于k-原型聚类和粗糙集的属性约简方法
Attribute Reduction Method Based on k-prototypes Clustering and Rough Sets
计算机科学, 2021, 48(6A): 342-348. https://doi.org/10.11896/jsjkx.201000053
[6] 曾惠坤, 米据生, 李仲玲.
形式背景中概念及约简的动态更新方法
Dynamic Updating Method of Concepts and Reduction in Formal Context
计算机科学, 2021, 48(1): 131-135. https://doi.org/10.11896/jsjkx.200800018
[7] 刘凌云, 钱辉, 邢红杰, 董春茹, 张峰.
一种基于Q-学习算法的增量分类模型
Incremental Classification Model Based on Q-learning Algorithm
计算机科学, 2020, 47(8): 171-177. https://doi.org/10.11896/jsjkx.190600150
[8] 岳晓威, 彭莎, 秦克云.
基于面向对象(属性)概念格的形式背景属性约简方法
Attribute Reduction Methods of Formal Context Based on ObJect (Attribute) Oriented Concept Lattice
计算机科学, 2020, 47(6A): 436-439. https://doi.org/10.11896/JsJkx.191100011
[9] 陈毅宁,陈红梅.
基于距离比值尺度的模糊粗糙集属性约简
Attribute Reduction of Fuzzy Rough Set Based on Distance Ratio Scale
计算机科学, 2020, 47(3): 67-72. https://doi.org/10.11896/jsjkx.190100196
[10] 徐怡,唐静昕.
基于优化可辨识矩阵和改进差别信息树的属性约简算法
Attribute Reduction Algorithm Based on Optimized Discernibility Matrix and Improving Discernibility Information Tree
计算机科学, 2020, 47(3): 73-78. https://doi.org/10.11896/jsjkx.190500125
[11] 侯成军,米据生,梁美社.
基于局部可调节多粒度粗糙集的属性约简
Attribute Reduction Based on Local Adjustable Multi-granulation Rough Set
计算机科学, 2020, 47(3): 87-91. https://doi.org/10.11896/jsjkx.190500162
[12] 郭庆春,马建敏.
对偶区间集概念格上区间集协调集的判定方法
Judgment Methods of Interval-set Consistent Sets of Dual Interval-set Concept Lattices
计算机科学, 2020, 47(3): 98-102. https://doi.org/10.11896/jsjkx.190500098
[13] 龙柄翰, 徐伟华, 张晓燕.
不协调目标信息系统中基于改进差别信息树的分布属性约简
Distribution Attribute Reduction Based on Improved Discernibility Information Tree in Inconsistent System
计算机科学, 2019, 46(6A): 115-119.
[14] 李艳, 张丽, 陈俊芬.
动态信息系统中基于序贯三支决策的属性约简方法
Attribute Reduction Method Based on Sequential Three-way Decisions in Dynamic Information Systems
计算机科学, 2019, 46(6A): 120-123.
[15] 李愚, 柴国钟, 卢纯福, 唐智川.
基于增量自适应学习的在线肌电手势识别
On-line sEMG Hand Gesture Recognition Based on Incremental Adaptive Learning
计算机科学, 2019, 46(4): 274-279. https://doi.org/10.11896/j.issn.1002-137X.2019.04.043
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!