基于Levy飞行策略的改进樽海鞘群算法

计算机科学 ›› 2020, Vol. 47 ›› Issue (7): 154-160.doi: 10.11896/jsjkx.190600068

• 人工智能 • 上一篇    下一篇

基于Levy飞行策略的改进樽海鞘群算法

张严, 秦亮曦   

  1. 广西大学计算机与电子信息学院 南宁530004
  • 收稿日期:2019-06-13 出版日期:2020-07-15 发布日期:2020-07-16
  • 通讯作者: 秦亮曦(qin_lx@126.com)
  • 作者简介:leelee_yan@163.com
  • 基金资助:
    广西科技计划(桂科AB16380260);公益性行业(气象)科研专项(GYHY201406027)

Improved Salp Swarm Algorithm Based on Levy Flight Strategy

ZHANG Yan, QIN Liang-xi   

  1. School of Computer,Electronics and Information,Guangxi University,Nanning 530004,China
  • Received:2019-06-13 Online:2020-07-15 Published:2020-07-16
  • About author:ZHANG Yan,born in 1991,postgradua-te.His main research interests include data mining,machine learning and deep learning.
    QIN Liang-xi,born in 1963,Ph.D,professor,is a member of China Computer Federation.His main research interests include data mining,decision rough set and deep learning.etc.
  • Supported by:
    This work was supported by Guangxi Key R&D Project (Guike AB16380260) and Specialized Scientific Research in Public Welfare Industry (Meteorology) (GYHY201406027)

摘要: 针对樽海鞘群算法(Salp Swarm Algorithm,SSA)在寻优过程中存在的收敛速度较慢、容易陷入局部最优的缺点,提出了一种改进的采用莱维飞行策略的条件化更新的樽海鞘群算法(Levy Flight-based Conditional Updating Salp Swarm Algorithm,LECUSSA),并将其运用于分类算法的特征子集选择过程。首先,利用莱维飞行策略的长短跳跃特点对领导者位置进行随机更新,以增强全局最优的搜索能力;其次,增加对追随者位置的更新条件,让追随者不再盲目地跟随,从而加快收敛速度。在23个优化基准函数上对LECUSSA算法与其他算法进行了性能比较实验;并把算法运用到支持向量机(Support Vector Machine,SVM)算法的分类特征子集选择中,采用8个UCI数据集对特征选择后的分类结果进行了性能比较实验。实验结果表明,LECUSSA具有良好的全局最优搜索能力和较快的收敛速度,利用LECUSSA算法进行特征选择后,能够找到最佳分类准确率的特征子集。

关键词: 莱维飞行, 特征选择, 条件化更新, 樽海鞘群算法

Abstract: Aiming at the shortcomings of slow convergence speed and easy to fall into local optimum in the optimization process of the Salp swarm algorithm (SSA),a Levy Flight-based Conditional Updating Salp Swarm Algorithm (abbreviated as LECUSSA) is proposed and it is used in the feature subset selection of classification algorithm.Firstly,the leader position is updated randomly by using the long and short jump characteristics of Levy Flight strategy,which enhances the global optimal search ability.Secondly,the conditional updating condition to the follower’s position is added to make the follower no longer follow blindly,thus accelerating the convergence speed.The performance of LECUSSA algorithm is compared with other algorithms on 23 benchmark functions.The algorithm is applied to the selection of classification feature subset of SVM algorithm,and 8 UCI datasets are used to compare the performance of the classification results after feature selection.The experimental results show that LECUSSA has good global optimal search ability and fast convergence speed.After feature selection using LECUSSA algorithm,the feature subset with the best classification accuracy can be found.

Key words: Conditional update, Feature selection, Levy flight, Salp swarm algorithm

中图分类号: 

  • TP181
[1]WEBB B.Swarm Intelligence:From Natural to Artificial Systems[J].Connection Science,2002,14(2):163-164.
[2]KENNEDY J,EBERHART R.Particle swarm optimization[C]//Proceedings of the IEEE International Conference on Neural Networks.1995:1942-1948.
[3]YANG X S.Firefly algorithms for multimodal optimization[C]//International Symposium on Stochastic Algorithms.Berlin:Springer,2009:169-178.
[4]YANG X S,DEB S.Cuckoo search via Lévy flights[C]//2009 World Congress on Nature & Biologically Inspired Computing (NaBIC).IEEE Press,2009:210-214.
[5]MIRJALILI S,MIRJALILI S M,LEWIS A.Grey Wolf Optimizer[J].Advances in Engineering Software,2014,69:46-61.
[6]MIRJALILI S.Dragonfly algorithm:a new meta-heuristic optimization technique for solving single-objective,discrete,and multi-objective problems[J].Neural Computing and Applications,2016,27(4):1053-1073.
[7]MIRJALILI S,LEWIS A.The Whale Optimization Algorithm[J].Advances in Engineering Software,2016,95:51-67.
[8]LIU H,MOTODA H.Feature selection for knowledge discovery and data mining[M].Springer Science & Business Media,2012:73-95.
[9]MIRJALILI S,GANDOMI A H,MIRJALILI S Z,et al.Salp Swarm Algorithm:A bio-inspired optimizer for engineering design problems[J].Advances in Engineering Software,2017,114:163-191.
[10]CHEN T,WANG M X,HUANG X S.Passive TDOA location based on Bohai Sheath Swarm Algorithms [J].Chinese Journal of Electronics and Information,2018,40(7):72-78.
[11]HUSSIEN A G,HASSANIEN A E,HOUSSEIN E H.Swarming behaviour of salps algorithm for predicting chemical compound activities[C]//2017 Eighth International Conference on Intelligent Computing and Information Systems (ICICIS).IEEE Press,2017:315-320.
[12]WANG M Q,WANG Y,JI Z C.PMSM multi-parameter identification based on improved salp swarm algorithm [J].Chinese Journal of System Simulation,2018(11):4284-4291.
[13]QAIS M H,HASANIEN H M,ALGHUWAINEM S.Enhanced salp swarm algorithm:Application to variable speed wind genera-tors[J].Engineering Applications of Artificial Intelligence,2019,80:82-96.
[14]XING Z K,JIA H M,SONG W L.Multi-threshold image segmentation based on Levy’s Flying Bowl Sheath swarm optimization algorithm [J/OL].Chinese Journal of Automation. [2019-08-10].https://doi.org/10.16383/j.aas.c180140.
[15]HEGAZY A E,MAKHLOUF M A,EL-TAWEL G S.Improved salp swarm algorithm for feature selection[J].Journal of King Saud University-Computer and Information Sciences,2020,32(3):355-344.
[16]FARIS H,MAFARJA M M,HEIDARI A A,et al.An efficient binary salp swarm algorithm with crossover scheme for feature selection problems[J].Knowledge-Based Systems,2018,154:43-67.
[17]IBRAHIM R A,EWEES A A,OLIVA D,et al.Improved salp swarm algorithm based on particle swarm optimization for feature selection[J].Journal of Ambient Intelligence andHuma-nized Computing,2019,10(8):3155-3169.
[18]SAYED G I,KHORIBA G,HAGGAG M H.A novel chaotic salp swarm algorithm for global optimization and feature selection[J].Applied Intelligence,2018,48(10):3462-3481.
[19]YAN X F,YE D Y.An improved flora foraging algorithm based on Levy flight [J].Computer system applications,2015,24 (3):124-132.
[20]HÜSEYIN H,HARUN U.A novel particle swarm optimization algorithm with LeÜvy flight[J].Applied Soft Computing,2014,23:333-345.
[21]AYDOĞDU Î,AKIN A,SAKA M P.Design optimization of real world steel space frames using artificial bee colony algorithm with Levy flight distribution[J].Advances in Engineering Software,2016,92:1-14.
[22]LIU C P,YE C M.Bat algorithm with Levy flight characteristics [J].Chinese Journal of Intelligent Systems,2013,8(3):240-246.
[23]BIAGINI F.Stochastic calculus for fractional Brownian motion and applications[M].London:Springer,2008:5-20.
[24]ZHU X E,HAO X,XIA S R.Levy flight-based feature selection algorithm [J].Chinese Journal of Zhejiang University (Engineering Edition),2013(4):638-643.
[25]EDWARDS A M,PHILLIPS R A,WATKINS N W,et al.Revisiting Lévyflight search patterns of wandering albatrosses,bumblebees and deer [J].Nature,2007,449(7165):1044-1048.
[26]EMBRECHTS P,KLÜPPELBERG C,MIKOSCH T.Modelling extremal events:for insurance and finance[M]//Science &Busi-ness Media.Springer,2013:371-403.
[27]MANTEGNA R N.Fast,accurate algorithm for numerical simulation of Lévy stable stochastic processes[J].Physical Review.E,1994,49(5):4677-4689.
[1] 李斌, 万源.
基于相似度矩阵学习和矩阵校正的无监督多视角特征选择
Unsupervised Multi-view Feature Selection Based on Similarity Matrix Learning and Matrix Alignment
计算机科学, 2022, 49(8): 86-96. https://doi.org/10.11896/jsjkx.210700124
[2] 陈俊, 何庆, 李守玉.
基于自适应反馈调节因子的阿基米德优化算法
Archimedes Optimization Algorithm Based on Adaptive Feedback Adjustment Factor
计算机科学, 2022, 49(8): 237-246. https://doi.org/10.11896/jsjkx.210700150
[3] 胡艳羽, 赵龙, 董祥军.
一种用于癌症分类的两阶段深度特征选择提取算法
Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification
计算机科学, 2022, 49(7): 73-78. https://doi.org/10.11896/jsjkx.210500092
[4] 范星泽, 禹梅.
改进灰狼算法的无线传感器网络覆盖优化
Coverage Optimization of WSN Based on Improved Grey Wolf Optimizer
计算机科学, 2022, 49(6A): 628-631. https://doi.org/10.11896/jsjkx.210500037
[5] 康雁, 王海宁, 陶柳, 杨海潇, 杨学昆, 王飞, 李浩.
混合改进的花授粉算法与灰狼算法用于特征选择
Hybrid Improved Flower Pollination Algorithm and Gray Wolf Algorithm for Feature Selection
计算机科学, 2022, 49(6A): 125-132. https://doi.org/10.11896/jsjkx.210600135
[6] 储安琪, 丁志军.
基于灰狼优化算法的信用评估样本均衡化与特征选择同步处理
Application of Gray Wolf Optimization Algorithm on Synchronous Processing of Sample Equalization and Feature Selection in Credit Evaluation
计算机科学, 2022, 49(4): 134-139. https://doi.org/10.11896/jsjkx.210300075
[7] 孙林, 黄苗苗, 徐久成.
基于邻域粗糙集和Relief的弱标记特征选择方法
Weak Label Feature Selection Method Based on Neighborhood Rough Sets and Relief
计算机科学, 2022, 49(4): 152-160. https://doi.org/10.11896/jsjkx.210300094
[8] 李宗然, 陈秀宏, 陆赟, 邵政毅.
鲁棒联合稀疏不相关回归
Robust Joint Sparse Uncorrelated Regression
计算机科学, 2022, 49(2): 191-197. https://doi.org/10.11896/jsjkx.210300034
[9] 罗文聪, 郑嘉利, 全艺璇, 谢孝德, 林子涵.
基于改进型多目标樽海鞘群算法的RFID阅读器天线优化部署
Optimized Deployment of RFID Reader Antenna Based on Improved Multi-objective Salp Swarm Algorithm
计算机科学, 2021, 48(9): 292-297. https://doi.org/10.11896/jsjkx.200700167
[10] 张叶, 李志华, 王长杰.
基于核密度估计的轻量级物联网异常流量检测方法
Kernel Density Estimation-based Lightweight IoT Anomaly Traffic Detection Method
计算机科学, 2021, 48(9): 337-344. https://doi.org/10.11896/jsjkx.200600108
[11] 杨蕾, 降爱莲, 强彦.
基于自编码器和流形正则的结构保持无监督特征选择
Structure Preserving Unsupervised Feature Selection Based on Autoencoder and Manifold Regularization
计算机科学, 2021, 48(8): 53-59. https://doi.org/10.11896/jsjkx.200700211
[12] 侯春萍, 赵春月, 王致芃.
基于自反馈最优子类挖掘的视频异常检测算法
Video Abnormal Event Detection Algorithm Based on Self-feedback Optimal Subclass Mining
计算机科学, 2021, 48(7): 199-205. https://doi.org/10.11896/jsjkx.200800146
[13] 胡艳梅, 杨波, 多滨.
基于网络结构的正则化逻辑回归
Logistic Regression with Regularization Based on Network Structure
计算机科学, 2021, 48(7): 281-291. https://doi.org/10.11896/jsjkx.201100106
[14] 周钢, 郭福亮.
基于特征选择的高维数据集成学习方法研究
Research on Ensemble Learning Method Based on Feature Selection for High-dimensional Data
计算机科学, 2021, 48(6A): 250-254. https://doi.org/10.11896/jsjkx.200700102
[15] 章菊, 李学鋆.
基于莱维萤火虫算法的智能生产线调度问题研究
Research on Intelligent Production Line Scheduling Problem Based on LGSO Algorithm
计算机科学, 2021, 48(6A): 668-672. https://doi.org/10.11896/jsjkx.210300118
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!