基于BP神经网络的摔倒检测算法

计算机科学 ›› 2020, Vol. 47 ›› Issue (6A): 242-246.doi: 10.11896/JsJkx.191000077

• 计算机图形学 & 多媒体 • 上一篇    下一篇

基于BP神经网络的摔倒检测算法

周立鹏1, 孟利民1, 周磊1, 蒋维2, 董建平3   

  1. 1 浙江工业大学信息工程学院 杭州 310023;
    2 浙江树人大学信息科技学院 杭州 310015;
    3 台州市行政学院信息处 浙江 台州 318000
  • 发布日期:2020-07-07
  • 通讯作者: 孟利民(mlm@zJut.edu.cn)
  • 作者简介:2111703015@zJut.edu.cn
  • 基金资助:
    国家自然科学基金项目(61871349);浙江省基础公益项目(LY18F010024,LQ19F010013)

Fall Detection Algorithm Based on BP Neural Network

ZHOU Li-peng1, MENG Li-min1, ZHOU Lei1, JIANG Wei2 and DONG Jian-ping3   

  1. 1 College of Information Engineering,ZheJiang University of Technology,Hangzhou 310023,China
    2 College of Information Science and Technology,ZheJiang Shuren Unuversity,Hangzhou 310015,China
    3 Information Department,Taizhou Administrative College,Taizhou,ZheJiang 318000,China
  • Published:2020-07-07
  • About author:ZHOU Li-peng, born in 1994, postgra-duate.His main research interests include wireless communication signal processing and system design, machine learning, etc.
    MENG Li-min, born in 1963, Ph.D, professor, Ph.D supervisor.Her main research interests include wireless communication and network, intelligent information system, network management, multimedia digital communication and network, etc.
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (61871349) and Basic public welfare proJects in ZheJiang (LY18F010024,LQ19F010013).

摘要: 摔倒对于老年人来说是一个十分严重的问题,实时检测老年人是否摔倒对于减轻摔倒造成的伤害具有重要意义。为此,文中提出了一种基于BP神经网络的摔倒检测算法。该算法采用佩戴于腰部的六轴传感器(MPU6050)来采集人体运动数据,使用简单的统计学方法对数据进行特征提取,并以提取到的特征为BP神经网络的输入神经元,用Levenberg-Marquardt算法训练神经网络模型,使其能够实现摔倒检测的功能。实验结果表明,该算法可以较好地识别摔倒,其准确率可以达到99.55%。

关键词: BP神经网络, 可穿戴式设备, 模式识别, 摔倒检测, 特征提取

Abstract: Fall is a very serious problem for the elderly.Real-time detection of whether the elderly fall or not is of great significance to reduce the inJury caused by falling.Therefore,a fall detection algorithm based on BP neural network is proposed in this paper.The algorithm collects human motion data with a six-axis sensor (MPU6050) worn at the waist,and uses a simple statistical method to extract features from the data.The extracted features are used as input neurons of BP neural network,and Levenberg-Marquardt algorithm is used to train the neural network model,so that it can realize the function of fall detection.Experimental results show that the algorithm can recognize falls well and the accuracy can reach 99.55%.

Key words: BP neural network, Fall detection, Feature extraction, Pattern recognition, Wearable equipment

中图分类号: 

  • TP183
[1] MA L P,LI N,YANG W,et al.The challenge of aging on the healthcare delivery in China.Chinese Hospitals,2019,23(4):1-3.
[2] YU M,YU Y,RHUMA A,et al.An Online One Class Support Vector Machine-Based Person-Specific Fall Detection System for Monitoring an Elderly Individual in a Room Environment.IEEE Journal of Biomedical and Health Informatics,2013,17(6):1002-1014.
[3] ROUGIER C,MEUNIER J,ST-ARNAUD A,et al.Robust Video Surveillance for Fall Detection Based on Human Shape Deformation.IEEE Transactions on Circuits and Systems for Video Technology,2011,21(5):611-622.
[4] LI Y,HO K C,POPESCU M.A Microphone Array System for Automatic Fall Detection.IEEE Transactions on Bio-medical Engineering,2012,59(5):1291-1301.
[5] TANG Y S,XIE N,HE J Q.Design and Implementation of Senile Fall Detection Algorithm Based on Triaxial Accelerometer.Microcomputer Applications,2019,35(2):42-44.
[6] HOU M,WANG H,XIAO Z,et al.An SVM fall recognition algorithm based on a gravity acceleration sensor.Systems Science & Control Engineering,2018,6(3):208-214.
[7] CHO H,YOON S M.Applying singular value decomposition on accelerometer data for 1D convolutional neural network based fall detection.Electronics Letters,2019,55(6):320-322.
[8] LIU P,LU T C,LV Y Y,et al.MEMS Tri-Axial Accelerometer Based Fall Detection.Chinese Journal of Sensors and Actuators,2014,27(4):570-574.
[9] LI J Y.Bp Neural Network Optimized by PSO and its Application in Function Approximation.Advanced Materials Research,2014:945-949.
[10] LIU P,ZHANG W.An Fault Diagnosis Intelligent Algorithm Based on Improved BP Neural Network.International Journal of Pattern Recognition and Artificial Intelligence,2018(4).
[11] LAI C F,CHANG S Y,CHAO H C,et al.Detection of Cognitive InJured Body Region Using Multiple Triaxial Accelerometers for Elderly Falling.IEEE Sensors Journal,2011,11(3):763-770.
[12] XIA K W,LI C B,SHEN J Y.An Optimization Algorithm on the Number of Hidden Layer Nodes in Feed-forward Neural Network.Computer Science,2005(10):143-145.
[13] MADSEN K,NIELSEN H B,TINGLEFF O.Methods for non-linear least squares problems(2nd Edition).Informatics and Mathematical Modellings,Technical University of Denmark,2004.
[14] HU S J,QIN J B,GUO W.A Fall Detection Algorithm with Automatic Feature Extraction.Chinese Journal of Sensors and Actuators,2018,31(12):66-71.
[1] 张源, 康乐, 宫朝辉, 张志鸿.
基于Bi-LSTM的期货市场关联交易行为检测方法
Related Transaction Behavior Detection in Futures Market Based on Bi-LSTM
计算机科学, 2022, 49(7): 31-39. https://doi.org/10.11896/jsjkx.210400304
[2] 曾志贤, 曹建军, 翁年凤, 蒋国权, 徐滨.
基于注意力机制的细粒度语义关联视频-文本跨模态实体分辨
Fine-grained Semantic Association Video-Text Cross-modal Entity Resolution Based on Attention Mechanism
计算机科学, 2022, 49(7): 106-112. https://doi.org/10.11896/jsjkx.210500224
[3] 程成, 降爱莲.
基于多路径特征提取的实时语义分割方法
Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction
计算机科学, 2022, 49(7): 120-126. https://doi.org/10.11896/jsjkx.210500157
[4] 刘伟业, 鲁慧民, 李玉鹏, 马宁.
指静脉识别技术研究综述
Survey on Finger Vein Recognition Research
计算机科学, 2022, 49(6A): 1-11. https://doi.org/10.11896/jsjkx.210400056
[5] 刘宝宝, 杨菁菁, 陶露, 王贺应.
基于DE-LSTM模型的教育统计数据预测研究
Study on Prediction of Educational Statistical Data Based on DE-LSTM Model
计算机科学, 2022, 49(6A): 261-266. https://doi.org/10.11896/jsjkx.220300120
[6] 徐佳楠, 张天瑞, 赵伟博, 贾泽轩.
面向供应链风险评估的改进BP小波神经网络研究
Study on Improved BP Wavelet Neural Network for Supply Chain Risk Assessment
计算机科学, 2022, 49(6A): 654-660. https://doi.org/10.11896/jsjkx.210800049
[7] 朱旭辉, 沈国娇, 夏平凡, 倪志伟.
基于螺旋进化萤火虫算法和BP神经网络的模型及其在PPP融资风险预测中的应用
Model Based on Spirally Evolution Glowworm Swarm Optimization and Back Propagation Neural Network and Its Application in PPP Financing Risk Prediction
计算机科学, 2022, 49(6A): 667-674. https://doi.org/10.11896/jsjkx.210800088
[8] 高元浩, 罗晓清, 张战成.
基于特征分离的红外与可见光图像融合算法
Infrared and Visible Image Fusion Based on Feature Separation
计算机科学, 2022, 49(5): 58-63. https://doi.org/10.11896/jsjkx.210200148
[9] 左杰格, 柳晓鸣, 蔡兵.
基于图像分块与特征融合的户外图像天气识别
Outdoor Image Weather Recognition Based on Image Blocks and Feature Fusion
计算机科学, 2022, 49(3): 197-203. https://doi.org/10.11896/jsjkx.201200263
[10] 任首朋, 李劲, 王静茹, 岳昆.
基于集成回归决策树的lncRNA-疾病关联预测方法
Ensemble Regression Decision Trees-based lncRNA-disease Association Prediction
计算机科学, 2022, 49(2): 265-271. https://doi.org/10.11896/jsjkx.201100132
[11] 夏静, 马中, 戴新发, 胡哲琨.
基于BP神经网络的智能云效能模型
Efficiency Model of Intelligent Cloud Based on BP Neural Network
计算机科学, 2022, 49(2): 353-367. https://doi.org/10.11896/jsjkx.201100140
[12] 张师鹏, 李永忠.
基于降噪自编码器和三支决策的入侵检测方法
Intrusion Detection Method Based on Denoising Autoencoder and Three-way Decisions
计算机科学, 2021, 48(9): 345-351. https://doi.org/10.11896/jsjkx.200500059
[13] 冯霞, 胡志毅, 刘才华.
跨模态检索研究进展综述
Survey of Research Progress on Cross-modal Retrieval
计算机科学, 2021, 48(8): 13-23. https://doi.org/10.11896/jsjkx.200800165
[14] 张丽倩, 李孟航, 高珊珊, 张彩明.
面向计算机辅助舌诊关键问题的解决方案综述
Summary of Computer-assisted Tongue Diagnosis Solutions for Key Problems
计算机科学, 2021, 48(7): 256-269. https://doi.org/10.11896/jsjkx.200800223
[15] 暴雨轩, 芦天亮, 杜彦辉, 石达.
基于i_ResNet34模型和数据增强的深度伪造视频检测方法
Deepfake Videos Detection Method Based on i_ResNet34 Model and Data Augmentation
计算机科学, 2021, 48(7): 77-85. https://doi.org/10.11896/jsjkx.210300258
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!