计算机科学 ›› 2020, Vol. 47 ›› Issue (6A): 242-246.doi: 10.11896/JsJkx.191000077
周立鹏1, 孟利民1, 周磊1, 蒋维2, 董建平3
ZHOU Li-peng1, MENG Li-min1, ZHOU Lei1, JIANG Wei2 and DONG Jian-ping3
摘要: 摔倒对于老年人来说是一个十分严重的问题,实时检测老年人是否摔倒对于减轻摔倒造成的伤害具有重要意义。为此,文中提出了一种基于BP神经网络的摔倒检测算法。该算法采用佩戴于腰部的六轴传感器(MPU6050)来采集人体运动数据,使用简单的统计学方法对数据进行特征提取,并以提取到的特征为BP神经网络的输入神经元,用Levenberg-Marquardt算法训练神经网络模型,使其能够实现摔倒检测的功能。实验结果表明,该算法可以较好地识别摔倒,其准确率可以达到99.55%。
中图分类号:
[1] MA L P,LI N,YANG W,et al.The challenge of aging on the healthcare delivery in China.Chinese Hospitals,2019,23(4):1-3. [2] YU M,YU Y,RHUMA A,et al.An Online One Class Support Vector Machine-Based Person-Specific Fall Detection System for Monitoring an Elderly Individual in a Room Environment.IEEE Journal of Biomedical and Health Informatics,2013,17(6):1002-1014. [3] ROUGIER C,MEUNIER J,ST-ARNAUD A,et al.Robust Video Surveillance for Fall Detection Based on Human Shape Deformation.IEEE Transactions on Circuits and Systems for Video Technology,2011,21(5):611-622. [4] LI Y,HO K C,POPESCU M.A Microphone Array System for Automatic Fall Detection.IEEE Transactions on Bio-medical Engineering,2012,59(5):1291-1301. [5] TANG Y S,XIE N,HE J Q.Design and Implementation of Senile Fall Detection Algorithm Based on Triaxial Accelerometer.Microcomputer Applications,2019,35(2):42-44. [6] HOU M,WANG H,XIAO Z,et al.An SVM fall recognition algorithm based on a gravity acceleration sensor.Systems Science & Control Engineering,2018,6(3):208-214. [7] CHO H,YOON S M.Applying singular value decomposition on accelerometer data for 1D convolutional neural network based fall detection.Electronics Letters,2019,55(6):320-322. [8] LIU P,LU T C,LV Y Y,et al.MEMS Tri-Axial Accelerometer Based Fall Detection.Chinese Journal of Sensors and Actuators,2014,27(4):570-574. [9] LI J Y.Bp Neural Network Optimized by PSO and its Application in Function Approximation.Advanced Materials Research,2014:945-949. [10] LIU P,ZHANG W.An Fault Diagnosis Intelligent Algorithm Based on Improved BP Neural Network.International Journal of Pattern Recognition and Artificial Intelligence,2018(4). [11] LAI C F,CHANG S Y,CHAO H C,et al.Detection of Cognitive InJured Body Region Using Multiple Triaxial Accelerometers for Elderly Falling.IEEE Sensors Journal,2011,11(3):763-770. [12] XIA K W,LI C B,SHEN J Y.An Optimization Algorithm on the Number of Hidden Layer Nodes in Feed-forward Neural Network.Computer Science,2005(10):143-145. [13] MADSEN K,NIELSEN H B,TINGLEFF O.Methods for non-linear least squares problems(2nd Edition).Informatics and Mathematical Modellings,Technical University of Denmark,2004. [14] HU S J,QIN J B,GUO W.A Fall Detection Algorithm with Automatic Feature Extraction.Chinese Journal of Sensors and Actuators,2018,31(12):66-71. |
[1] | 张源, 康乐, 宫朝辉, 张志鸿. 基于Bi-LSTM的期货市场关联交易行为检测方法 Related Transaction Behavior Detection in Futures Market Based on Bi-LSTM 计算机科学, 2022, 49(7): 31-39. https://doi.org/10.11896/jsjkx.210400304 |
[2] | 曾志贤, 曹建军, 翁年凤, 蒋国权, 徐滨. 基于注意力机制的细粒度语义关联视频-文本跨模态实体分辨 Fine-grained Semantic Association Video-Text Cross-modal Entity Resolution Based on Attention Mechanism 计算机科学, 2022, 49(7): 106-112. https://doi.org/10.11896/jsjkx.210500224 |
[3] | 程成, 降爱莲. 基于多路径特征提取的实时语义分割方法 Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction 计算机科学, 2022, 49(7): 120-126. https://doi.org/10.11896/jsjkx.210500157 |
[4] | 刘伟业, 鲁慧民, 李玉鹏, 马宁. 指静脉识别技术研究综述 Survey on Finger Vein Recognition Research 计算机科学, 2022, 49(6A): 1-11. https://doi.org/10.11896/jsjkx.210400056 |
[5] | 刘宝宝, 杨菁菁, 陶露, 王贺应. 基于DE-LSTM模型的教育统计数据预测研究 Study on Prediction of Educational Statistical Data Based on DE-LSTM Model 计算机科学, 2022, 49(6A): 261-266. https://doi.org/10.11896/jsjkx.220300120 |
[6] | 徐佳楠, 张天瑞, 赵伟博, 贾泽轩. 面向供应链风险评估的改进BP小波神经网络研究 Study on Improved BP Wavelet Neural Network for Supply Chain Risk Assessment 计算机科学, 2022, 49(6A): 654-660. https://doi.org/10.11896/jsjkx.210800049 |
[7] | 朱旭辉, 沈国娇, 夏平凡, 倪志伟. 基于螺旋进化萤火虫算法和BP神经网络的模型及其在PPP融资风险预测中的应用 Model Based on Spirally Evolution Glowworm Swarm Optimization and Back Propagation Neural Network and Its Application in PPP Financing Risk Prediction 计算机科学, 2022, 49(6A): 667-674. https://doi.org/10.11896/jsjkx.210800088 |
[8] | 高元浩, 罗晓清, 张战成. 基于特征分离的红外与可见光图像融合算法 Infrared and Visible Image Fusion Based on Feature Separation 计算机科学, 2022, 49(5): 58-63. https://doi.org/10.11896/jsjkx.210200148 |
[9] | 左杰格, 柳晓鸣, 蔡兵. 基于图像分块与特征融合的户外图像天气识别 Outdoor Image Weather Recognition Based on Image Blocks and Feature Fusion 计算机科学, 2022, 49(3): 197-203. https://doi.org/10.11896/jsjkx.201200263 |
[10] | 任首朋, 李劲, 王静茹, 岳昆. 基于集成回归决策树的lncRNA-疾病关联预测方法 Ensemble Regression Decision Trees-based lncRNA-disease Association Prediction 计算机科学, 2022, 49(2): 265-271. https://doi.org/10.11896/jsjkx.201100132 |
[11] | 夏静, 马中, 戴新发, 胡哲琨. 基于BP神经网络的智能云效能模型 Efficiency Model of Intelligent Cloud Based on BP Neural Network 计算机科学, 2022, 49(2): 353-367. https://doi.org/10.11896/jsjkx.201100140 |
[12] | 张师鹏, 李永忠. 基于降噪自编码器和三支决策的入侵检测方法 Intrusion Detection Method Based on Denoising Autoencoder and Three-way Decisions 计算机科学, 2021, 48(9): 345-351. https://doi.org/10.11896/jsjkx.200500059 |
[13] | 冯霞, 胡志毅, 刘才华. 跨模态检索研究进展综述 Survey of Research Progress on Cross-modal Retrieval 计算机科学, 2021, 48(8): 13-23. https://doi.org/10.11896/jsjkx.200800165 |
[14] | 张丽倩, 李孟航, 高珊珊, 张彩明. 面向计算机辅助舌诊关键问题的解决方案综述 Summary of Computer-assisted Tongue Diagnosis Solutions for Key Problems 计算机科学, 2021, 48(7): 256-269. https://doi.org/10.11896/jsjkx.200800223 |
[15] | 暴雨轩, 芦天亮, 杜彦辉, 石达. 基于i_ResNet34模型和数据增强的深度伪造视频检测方法 Deepfake Videos Detection Method Based on i_ResNet34 Model and Data Augmentation 计算机科学, 2021, 48(7): 77-85. https://doi.org/10.11896/jsjkx.210300258 |
|