基于Multi-Path RefineNet的多特征高分辨率SAR图像道路提取算法

计算机科学 ›› 2020, Vol. 47 ›› Issue (3): 156-161.doi: 10.11896/jsjkx.190100124

• 计算机图形学&多媒体 • 上一篇    下一篇

基于Multi-Path RefineNet的多特征高分辨率SAR图像道路提取算法

陈立福1,刘燕芝1,张鹏1,袁志辉1,邢学敏2   

  1. (长沙理工大学电气与信息工程学院 长沙410114)1;
    (长沙理工大学交通运输工程学院 长沙410114)2
  • 收稿日期:2019-01-16 出版日期:2020-03-15 发布日期:2020-03-30
  • 通讯作者: 陈立福(lifu_chen@139.com)
  • 基金资助:
    国家自然科学基金青年科学基金(61701047,41701536);湖南省教育厅优秀青年项目(16B004);湖南省研究生科研创新项目(CX2017B479)

Road Extraction Algorithm of Multi-feature High-resolution SAR Image Based on Multi-Path RefineNet

CHEN Li-fu1,LIU Yan-zhi1,ZHANG Peng1,YUAN Zhi-hui1,XING Xue-min2   

  1. (College of Electrical and Information Engineering, Changsha University of Science & Technology, Changsha 410114, China)1;
    (College of Traffic and Transportation Engineering, Changsha University of Science & Technology, Changsha 410114, China)2
  • Received:2019-01-16 Online:2020-03-15 Published:2020-03-30
  • About author:CHEN Li-fu,born in 1979,Ph.D,postgraduate supervisor.His main research interests include remote sensing image interpretation and deep learning. LIU Yan-zhi,born in 1992,postgradua-te.Her main research interests include image processing and deep learning.
  • Supported by:
    This work was supported by the Young Scientists Fund of the National Natural Science Foundation of China (61701047, 41701536), Excellent Youth Project of Hunan Provincial Department of Education (16B004) and Research and Innovation Project for Graduate Students in Hunan Province (CX2017B479).

摘要: 为解决现有高分辨率SAR图像道路提取算法自动化较差、普适性不高的问题,提出了一种基于多路径优化网络的多特征提取算法。首先,对SAR图像进行Gabor变换及灰度梯度共生矩阵变换,获取丰富的道路特征信息,联结级联优化网络和残差网络形成多路径优化网络;然后,对SAR原图、获取的低级特征图和标签图进行训练,充分利用每层网络提取的道路特征获取初始分割的道路结果;最后,利用数学形态学运算连接初始道路断裂处并去除虚警。利用所提算法对不同分辨率的SAR图像进行道路提取,实验结果表明,该算法在提取SAR图像道路方面适用范围广且道路提取效果佳。

关键词: 道路提取, 合成孔径雷达, 深度学习, 数学形态学运算, 特征提取

Abstract: In order to solve the problems of existing SAR image road extraction algorithm with poor automation and poor universality,a multi-feature road extraction algorithm was proposed based on the multi-path refinement network.Firstly,gabor transformation and gray level-gradient co-occurrence matrix transformation are performed on SAR images to obtain rich road feature information.A multi-path refinement network is formed by coupling the cascade refinement network and the residual network.Then,the SAR original image,the acquired low-level feature image and the label image are input into the new network for trai-ning,and the road features extracted from each layer of network are fully utilized to obtain the initial road segmentation results.Finally,mathematical morphology operation is used to connect the initial road fracture and remove false alarm.This algorithm is used for road extraction of SAR images with different resolutions.The experimental results show that this algorithm has a wide range of application in SAR image extraction and the effect of road extraction is better.

Key words: Deep learning, Feature extraction, Mathematical morphology operation, Road extraction, Synthetic aperture radar (SAR)

中图分类号: 

  • TP753
[1]TIAN T,LU P P,WEI Y B.Road extraction in VHR SAR ima- ge based on road junction[J].Foreign Electronic Measurement Technology,2015,34(5):70-74.
[2]CHEN J H,GAO G,KU X S,et al.Review of road network extraction from SAR images [J].Chinese Journal of Image and Graphics,2013,18(1):11-23.
[3]DENG Q M,CHEN Y L,YANG J.Joint detection of roads in multi-frequency SAR images based on a particle filter [J].International Journal of Remote Sensing,2010,31(4):1069-1077.
[4]SUN X F,LI X G.Semi-automatic extraction of ribbon roads from VHR remotely sensed SAR imagery[C]∥Proceedings of Chinese Conference on Pattern Recognition.IEEE,2010:1-4.
[5]CHEN L F,WEN J,XIAO H G,et al.Road Extraction Algorithm for High Resolution SAR Image by Fusion of MRF Segmentation and Mathematical Morphology[J].China Academy of Space Technology,2015,35(2):17-24.
[6]XIAO H G,WEN J,CHEN L F,et al.A new high resolution SAR image road extraction algorithm [J].Computer engineering and applications,2016,52(15):198-202,207.
[7]JONG J,SHELHAMER E,DARRELL T.Fully convolutional networks for semantic segmentation[C]∥Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Piscataway NJ USA,2015:3431-3440.
[8]CHEN L,PAPANDREOU G,KOKKINOS I,et al.DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution,and Fully Connected CRFs [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2018,40(4):834-848.
[9]SHI HC,LI HL,MENG F M,et al.Hierarchical Parsing Net:Semantic Scene Parsing From Global Scene to Objects [J].IEEE Transactions on Multimedia,2018,20(10):2670-2682.
[10]LIN G H,MILAN A,SHEN C H,et al.RefineNet:Multi-Path Refinement Networks for High Resolution Semantic Segmentation[C]∥Proceedings of the 2017 IEEE Conference on ComputerVision and Pattern Recognition (CVPR).2017:5168-5177.
[11]HE K,ZHANG X,REN S,et al.Deep residual learning for ima- ge recognition [C]∥Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).2016:770-778.
[12]LECUN Y,BENGIO Y,HINTON G.Deep learning [J].NATURE,2015,521(7533):436-444.
[13]WANG J,ZHENG T,LEI P,et al.Study on Deep Learning in Radar[J].Journal of Radar,2018,7(4):395-411.
[14]KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNet classification with deep convolutional neural networks [C]∥Proceedings of Advances in Neural Information Processing Systems.2012:1097-1105.
[15]SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[C]∥Proceedings of International Conference on Learning Representations.2015:1-14.
[16]ARIVAZHAGAN S,GANESAN L,PRIYAL S P.Texture classification using Gabor wavelets based rotation invariant features [M].New York:EIsevier,2006.
[17]GENG J,WANG H Y,FAN J C,et al.Deep Supervised and Contractive Neural Network for SAR Image Classification[J].IEEE Transaction on Geoscience and Remote Sensing,2017,55(4):2442-2459.
[18]MIAO Z L,SHI W H,ZHANG H.A road centerline extraction algorithm from high resolution satellite imagery[J].Journal of China University of Mining and Technology,2013,42(5):887-892,898.
[19]PONT-TUSET J,MARQUES F.Supervised Evaluation of Ima- ge Segmentation and Object Proposal Techniques [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,38(7):1465-1478.
[1] 饶志双, 贾真, 张凡, 李天瑞.
基于Key-Value关联记忆网络的知识图谱问答方法
Key-Value Relational Memory Networks for Question Answering over Knowledge Graph
计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277
[2] 汤凌韬, 王迪, 张鲁飞, 刘盛云.
基于安全多方计算和差分隐私的联邦学习方案
Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy
计算机科学, 2022, 49(9): 297-305. https://doi.org/10.11896/jsjkx.210800108
[3] 徐涌鑫, 赵俊峰, 王亚沙, 谢冰, 杨恺.
时序知识图谱表示学习
Temporal Knowledge Graph Representation Learning
计算机科学, 2022, 49(9): 162-171. https://doi.org/10.11896/jsjkx.220500204
[4] 王剑, 彭雨琦, 赵宇斐, 杨健.
基于深度学习的社交网络舆情信息抽取方法综述
Survey of Social Network Public Opinion Information Extraction Based on Deep Learning
计算机科学, 2022, 49(8): 279-293. https://doi.org/10.11896/jsjkx.220300099
[5] 郝志荣, 陈龙, 黄嘉成.
面向文本分类的类别区分式通用对抗攻击方法
Class Discriminative Universal Adversarial Attack for Text Classification
计算机科学, 2022, 49(8): 323-329. https://doi.org/10.11896/jsjkx.220200077
[6] 姜梦函, 李邵梅, 郑洪浩, 张建朋.
基于改进位置编码的谣言检测模型
Rumor Detection Model Based on Improved Position Embedding
计算机科学, 2022, 49(8): 330-335. https://doi.org/10.11896/jsjkx.210600046
[7] 孙奇, 吉根林, 张杰.
基于非局部注意力生成对抗网络的视频异常事件检测方法
Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection
计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061
[8] 郭拯危, 付泽文, 李宁, 白澜.
高分辨率斜视聚束SAR回波仿真加速算法研究
Study on Acceleration Algorithm for Raw Data Simulation of High Resolution Squint Spotlight SAR
计算机科学, 2022, 49(8): 178-183. https://doi.org/10.11896/jsjkx.210600066
[9] 侯钰涛, 阿布都克力木·阿布力孜, 哈里旦木·阿布都克里木.
中文预训练模型研究进展
Advances in Chinese Pre-training Models
计算机科学, 2022, 49(7): 148-163. https://doi.org/10.11896/jsjkx.211200018
[10] 周慧, 施皓晨, 屠要峰, 黄圣君.
基于主动采样的深度鲁棒神经网络学习
Robust Deep Neural Network Learning Based on Active Sampling
计算机科学, 2022, 49(7): 164-169. https://doi.org/10.11896/jsjkx.210600044
[11] 苏丹宁, 曹桂涛, 王燕楠, 王宏, 任赫.
小样本雷达辐射源识别的深度学习方法综述
Survey of Deep Learning for Radar Emitter Identification Based on Small Sample
计算机科学, 2022, 49(7): 226-235. https://doi.org/10.11896/jsjkx.210600138
[12] 张源, 康乐, 宫朝辉, 张志鸿.
基于Bi-LSTM的期货市场关联交易行为检测方法
Related Transaction Behavior Detection in Futures Market Based on Bi-LSTM
计算机科学, 2022, 49(7): 31-39. https://doi.org/10.11896/jsjkx.210400304
[13] 胡艳羽, 赵龙, 董祥军.
一种用于癌症分类的两阶段深度特征选择提取算法
Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification
计算机科学, 2022, 49(7): 73-78. https://doi.org/10.11896/jsjkx.210500092
[14] 曾志贤, 曹建军, 翁年凤, 蒋国权, 徐滨.
基于注意力机制的细粒度语义关联视频-文本跨模态实体分辨
Fine-grained Semantic Association Video-Text Cross-modal Entity Resolution Based on Attention Mechanism
计算机科学, 2022, 49(7): 106-112. https://doi.org/10.11896/jsjkx.210500224
[15] 程成, 降爱莲.
基于多路径特征提取的实时语义分割方法
Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction
计算机科学, 2022, 49(7): 120-126. https://doi.org/10.11896/jsjkx.210500157
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!