基于FAHP与规划图融合的Web服务组合方法

计算机科学 ›› 2020, Vol. 47 ›› Issue (1): 270-275.doi: 10.11896/jsjkx.181102228

• 计算机网络 • 上一篇    下一篇

基于FAHP与规划图融合的Web服务组合方法

范国栋,祝铭,李静,崔晓柳   

  1. (山东理工大学计算机科学与技术学院 山东 淄博255000)
  • 收稿日期:2018-11-30 发布日期:2020-01-19
  • 通讯作者: 祝铭(zhu_ming@sdut.edu.cn)
  • 基金资助:
    国家自然科学基金项目(61473179);淄博市校城融合发展计划项目(2018ZBXC295);山东理工大学科技项目(4041-417010)

Web Service Composition by Combining FAHP and Graphplan

FAN Guo-dong,ZHU Ming,LI Jing,CUI Xiao-liu   

  1. (College of Computer Science and Technology,Shandong University of Technology,Zibo,Shandong 255000,China)
  • Received:2018-11-30 Published:2020-01-19
  • About author:FAN Guo-dong,born in 1990,master student.He is currently working on automated Web service composition.His main research interests are Web service composition,micro-service architecture and machine learning;ZHU Ming,born in 1983,Ph.D,is member of China Computer Federation (CCF).His main interests are related to process-oriented programming,Web service composition,event modeling,and concurrent systems.
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (61473179),Zibo City and University Integration Development Projects (2018ZBXC295),Science and Technology Projects of Shandong University of Technology (4041-417010).

摘要: 近年来,随着云计算的发展,越来越多的服务被发布在网上。如何将不同的Web服务组合在一起并使其满足功能性需求和非功能性需求成为了一个研究难点。Web服务质量 (Quality of Service,QoS)感知的Web服务组合问题属于NP难问题。为了解决这个问题,文中提出一种融合FAHP与改进Graphp lan算法的方法(FAHP and Improved Graphplan,FIGP)。首先,根据用户偏好使用模糊分析层生成服务的综合QoS;其次,在Graphplan向前扩展中,使用动态阈值对竞争力较差的服务进行剪枝,在保留关键服务的同时降低了时间复杂度;最后,在Graphplan向后搜索阶段,在满足功能性需求的前提下选择综合QoS最好的服务加入到组合中。实例分析和实验结果表明,与普通的Graphplan,Skyline及其他方法相比,FIGP不仅较好地提高了服务组合的质量,而且显著缩短了程序的执行时间。

关键词: Web服务组合,QoS,FAHP,Graphplan,自动组合

Abstract: In recent years,with the advance of cloud computing,more and more services have been published online.How to search an optimal composition with both functional and non-functional requirements has become a challenging problem.QoS-aware web service composition is an NP-hard problem.To solve this problem,a system combining FAHP with improved Graphplan algorithm was proposed.Firstly,the overall QoS of service is generated by using FAHP according to user preferences.Se-condly,in the forward expand stage of Graphplan,dynamic threshold is used to prune less competitive services,which reduces time complexity while ensuring that critical services are retained.Finally,in the backward searching stage of Graphplan,service with best overall QoS is selected into the composition,under the premise of meeting the functional requirements.Experimental results show that the proposed algorithm not only improves the quality of service composition,but also reduces the program running time significantly compared with the ordinary Graphplan,Skyline and other methods.

Key words: Web service composition,Quality of service,Fuzzy analytical hierarchy process,Graphplan,Automatic composition

中图分类号: 

  • TP393
[1]LI J,YAN Y H,LEMIRE D.Scaling up web service composition with the skyline operator[C]∥IEEE International Conference on Web Services.USA:ICWS,2016:147-154.
[2]YAN Y H,CHEN M.Anytime QoS-aware service composition over the graphplan[J].Service Oriented Computing and Applications,2015,9(1):1-19.
[3]ZHU M,FAN G D,LI J,et al.An Approach for QoS-aware Service Composition with GraphPlan and Fuzzy Logic[C]∥ International Conference on Emerging Ubiquitous Systems and Pervasive Networks.Procedia Computer Science,2018:56-63.
[4]LI J,YAN Y H,LEMIRE D.Full Solution Indexing for top-K Web Service Composition[J].IEEE Transactions on Services Computing,2016,11(3):521-533.
[5]LI J,YAN Y H,LEMIRE D.A Web Service Composition Method Based on Compact K2-Trees[C]∥ IEEE International Conference on Services Computing.IEEE Computer Society,2015.
[6]HUANG L T,DENG S G,DAI K,et al.Automatic Service Composition in Parallel with MapReduce[J].Chinese Journal of Electronics,2012,40(7):1397-1403.
[7]ZHU M,LI J,FAN G D,et al.Modeling and Verification of Response Time of QoS-aware Web Service Composition by Timed CSP[C]∥ International Conference on Emerging Ubiquitous Systems and Pervasive Networks.Procedia Computer Science,2018:48-55.
[8]CUI Y,WU J P,XU K,et al.A Survey of Research on Internet Service Quality Routing Algorithms[J].Journal of Software,2002(11):2065-2075.
[9]ZADEH L A .The Concept of a Linguistic Variable and Its Application to Approximate Reasoning—III[J].Information Scien-ces,1975,9(1):43-80.
[10]DARKO B,DRAGAN P,BOBAN D.Modification of analytic hierarchy process (AHP) method and its application in the defense decision-making[J].Scientific Research and Essays,2012,7(1):24-37.
[11]BOZANIC D,DRAGAN P,DRAGAN B.Modification of the analytic hierarchy process (AHP) method using fuzzy logic:Fuzzy AHP approach as a support to the decision making process concerning engagement of the group for additional hindering[J].Serbian Journal of Management,2015,10(2):151-171.
[12]CHARILAS D,MARKAKI O,PSARRAS J,et al.Application of Fuzzy AHP and ELECTRE to Network Selection[M]// Mobile Lightweight Wireless Systems.Springer Berlin Heidelberg,2009:63-73.
[13]WS-Challenge.Testsetgenerator2009[OL].https://code.google.com/p/wsc-pku-tcs/downloads/list.
[14]MANOLA F,MILLER E.Rdf primer [OL].http://www.w3.org/tr/rdfschema/.
[15]BECHHOFER S,HARMELEN F,HENDLER J,et al.OWL Web Ontology Language Reference[OL].https://www.w3.org/TR/owl-ref/.
[16]DOU D,MCDERMOTT D,QI P .Ontology Translation on the Semantic Web[M]∥Journal on Data Semantics II.Springer-Verlag,2004:35-57.
[17]LEE J K,SOHN M .eXtensible Rule Markup Language[J].Communications of the Acm,2003,46(5):59-64.
[18]ZHANG Y F,WANG J N,YAN Y H.Context-Aware Generic Service Discovery and Service Composition[C]∥ IEEE International Conference on Mobile Services.IEEE Computer Society,2014.
[19]SORA I,TODINCA D .Dealing with fuzzy QoS properties in service composition[C]∥ IEEE Jubilee International Sympo-sium on Applied Computational Intelligence & Informatics.Institute of Electrical and Electronics Engineers (IEEE).2015:197-202.
[20]AVILA S D,DJEMAME K.Fuzzy Logic Based QoS Optimization Mechanism for Service Composition[C]∥ IEEE International Symposium on Service Oriented System Engineering.Ins-titute of Electrical and Electronics Engineers ( IEEE),2013:182-191.
[21]ZHAO X,SHEN L,PENG X,et al.Toward SLA-constrained service composition:An approach based on a fuzzy linguistic preference model and an evolutionary algorithm[J].Information Sciences,2015,316:370-396.
[22]MA Y,WANG S G,SUN Q B,et al.Web Service Quality Metric Algorithm Employing Objective and Subjective Weight[J].Journal of Software,2014(11):2473-2485.
[23]ALMULLA M,ALMATORI K,YAHYAOUI H .A QoS-Based Fuzzy Model for Ranking Real World Web Services[C]∥ IEEE International Conference on Web Services.IEEE Computer So-ciety,2011:203-210.
[24]SUN X T,NIU J,GONG Q B,et al.services selection strategy based on combination weighting approach[J].Application Research of Computer,2017,34(8):2408-2411.
[1] 刘鑫, 王珺, 宋巧凤, 刘家豪.
一种基于AAE的协同多播主动缓存方案
Collaborative Multicast Proactive Caching Scheme Based on AAE
计算机科学, 2022, 49(9): 260-267. https://doi.org/10.11896/jsjkx.210800019
[2] 郭鹏军, 张泾周, 杨远帆, 阳申湘.
飞机机内无线通信网络架构与接入控制算法研究
Study on Wireless Communication Network Architecture and Access Control Algorithm in Aircraft
计算机科学, 2022, 49(9): 268-274. https://doi.org/10.11896/jsjkx.210700220
[3] 胡安祥, 尹小康, 朱肖雅, 刘胜利.
基于数据流特征的比较类函数识别方法
Strcmp-like Function Identification Method Based on Data Flow Feature Matching
计算机科学, 2022, 49(9): 326-332. https://doi.org/10.11896/jsjkx.220200163
[4] 姜洋洋, 宋丽华, 邢长友, 张国敏, 曾庆伟.
蜜罐博弈中信念驱动的攻防策略优化机制
Belief Driven Attack and Defense Policy Optimization Mechanism in Honeypot Game
计算机科学, 2022, 49(9): 333-339. https://doi.org/10.11896/jsjkx.220400011
[5] 王磊, 李晓宇.
基于随机洋葱路由的LBS移动隐私保护方案
LBS Mobile Privacy Protection Scheme Based on Random Onion Routing
计算机科学, 2022, 49(9): 347-354. https://doi.org/10.11896/jsjkx.210800077
[6] 王兴伟, 信俊昌, 邵安林, 毕远国, 易秀双.
企业内部工业互联网现状与发展对策研究
Study on Development Status and Countermeasures of Industrial Intranet in Enterprises
计算机科学, 2022, 49(7): 1-9. https://doi.org/10.11896/jsjkx.210900029
[7] 张翀宇, 陈彦明, 李炜.
边缘计算中面向数据流的实时任务调度算法
Task Offloading Online Algorithm for Data Stream Edge Computing
计算机科学, 2022, 49(7): 263-270. https://doi.org/10.11896/jsjkx.210300195
[8] 费星瑞, 谢逸.
基于HMM-NN的用户点击流识别
Click Streams Recognition for Web Users Based on HMM-NN
计算机科学, 2022, 49(7): 340-349. https://doi.org/10.11896/jsjkx.210600127
[9] 赵冬梅, 吴亚星, 张红斌.
基于IPSO-BiLSTM的网络安全态势预测
Network Security Situation Prediction Based on IPSO-BiLSTM
计算机科学, 2022, 49(7): 357-362. https://doi.org/10.11896/jsjkx.210900103
[10] 王思明, 谭北海, 余荣.
面向6G可信可靠智能的区块链分片与激励机制
Blockchain Sharding and Incentive Mechanism for 6G Dependable Intelligence
计算机科学, 2022, 49(6): 32-38. https://doi.org/10.11896/jsjkx.220400004
[11] Ran WANG, Jiang-tian NIE, Yang ZHANG, Kun ZHU.
Clustering-based Demand Response for Intelligent Energy Management in 6G-enabled Smart Grids
Clustering-based Demand Response for Intelligent Energy Management in 6G-enabled Smart Grids
计算机科学, 2022, 49(6): 44-54. https://doi.org/10.11896/jsjkx.220400002
[12] 魏辉, 陈泽茂, 张立强.
一种基于顺序和频率模式的系统调用轨迹异常检测框架
Anomaly Detection Framework of System Call Trace Based on Sequence and Frequency Patterns
计算机科学, 2022, 49(6): 350-355. https://doi.org/10.11896/jsjkx.210500031
[13] 陶礼靖, 邱菡, 朱俊虎, 李航天.
面向网络安全训练评估的受训者行为描述模型
Model for the Description of Trainee Behavior for Cyber Security Exercises Assessment
计算机科学, 2022, 49(6A): 480-484. https://doi.org/10.11896/jsjkx.210800048
[14] 何茜, 贺可太, 王金山, 林绅文, 杨菁林, 冯玉超.
比特币实体交易模式分析
Analysis of Bitcoin Entity Transaction Patterns
计算机科学, 2022, 49(6A): 502-507. https://doi.org/10.11896/jsjkx.210600178
[15] 高文龙, 周天阳, 朱俊虎, 赵子恒.
基于双向蚁群算法的网络攻击路径发现方法
Network Attack Path Discovery Method Based on Bidirectional Ant Colony Algorithm
计算机科学, 2022, 49(6A): 516-522. https://doi.org/10.11896/jsjkx.210500072
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!