针对设备差异性问题的增量式室内定位方法

计算机科学 ›› 2018, Vol. 45 ›› Issue (10): 69-77.doi: 10.11896/j.issn.1002-137X.2018.10.014

• 网络与通信 • 上一篇    下一篇

针对设备差异性问题的增量式室内定位方法

夏俊, 刘军发, 蒋鑫龙, 陈益强   

  1. 中国科学院大学 北京100049
    中国科学院计算技术研究所泛在计算系统研究中心 北京100190
    北京市移动计算与新型终端重点实验室 北京100190
  • 收稿日期:2018-03-03 出版日期:2018-11-05 发布日期:2018-11-05
  • 作者简介:夏 俊(1993-),男,硕士生,主要研究方向为机器学习、室内定位、行为识别等,E-mail:xiajun15@mails.ucas.ac.cn;刘军发(1973-),男,博士,副研究员,硕士生导师,主要研究方向为普适计算、虚拟现实、数据挖掘等,E-mail:liujunfa@ict.ac.cn(通信作者);蒋鑫龙(1989-),男,博士生,主要研究方向为室内定位、可穿戴计算等,E-mail:jiangxinlong@ict.ac.cn;陈益强(1973-),男,博士,研究员,博士生导师,主要研究方向为普适计算、人工智能、人机交互等,E-mail:yqchen@ict.ac.cn。
  • 基金资助:
    国家自然科学基金面上项目:面向可穿戴用户行为识别的增量学习方法研究(61572471),国家自然科学基金面上项目:融合多元传播模型和指纹模型的免标定室内定位方法研究(61472399),国家自然科学基金面上项目:递归深度学习网络的多极限环神经动力学模型及方法研究(61572004),广东省科技计划项目:面向健康监护的新型智能贴件关键技术研发及产业化(2015B010105001)资助。

Incremental Indoor Localization for Device Diversity Issues

XIA Jun, LIU Jun-fa, JIANG Xin-long, CHEN Yi-qiang   

  1. University of Chinese Academy of Sciences,Beijing 100049,China
    Research Center for Ubiquitous Computing Systems,Institute of Computing Technology,Chinese Academy of Sciences,Beijing 100190,China
    Beijing Key Laboratory of Mobile Computing and Pervasive Device,Beijing 100190,China
  • Received:2018-03-03 Online:2018-11-05 Published:2018-11-05

摘要: 随着WLAN的普及,基于RSS(Received Signal Strength)的室内定位方法逐渐成为研究与应用的热点。其中,基于指纹的定位方法已成为主流,此类方法的特点之一在于要求离线训练数据与在线测试数据满足独立同分布,然而,在实际环境中,现有的指纹定位方法或系统存在以下3个问题:1)不同终端设备的无线通讯硬件存在差异性,训练数据和测试数据的采集设备之间的差异性将严重影响定位精度;2)环境中的无线信号呈现高动态性,采集的数据存在显著的时效性,因此由训练数据得到的模型的定位性能将随着时间的推移不断下降;3)传统增量式定位模型需要大量的标定数据,不具有实际可用性。为解决以上问题,提出了一种针对设备差异性问题的增量式室内定位方法,利用终端在持续定位服务中采集的无标记数据来实时更新定位模型。实验表明,在实际蓝牙定位数据集上,相比于传统的定位模型方法,所提方法的整体定位精度更高,误差距离为3~5m时,其优势更为明显;同时,该方法具有时效优势,能够长时间保持有效定位。

关键词: 极速学习机, 设备差异性, 室内定位, 物联网, 增量学习

Abstract: With the rapid development of Wireless Local Area Network(WLAN),the Received Signal Strength(RSS) based indoor localization becomes a hot area in research and application fields.Among various kinds of up-to-date indoor localization methods,fingerprint based methods are most widely used because of its good performance,and one feature of those methods is that the accuracy is determined by the identification of the training and the testing dataset.Howe-ver,in practical applications,there are three problems in existing fingerprint based methods or system.Firstly,the loca-lization error caused by device variance is a severe problem.Secondly,the wireless data are changing as the time passed,leading to the reduction of the prediction accuracy.Thirdly,traditional fingerprint based methods or system cannot avoid the dependency on a large amount of labeled data to keep effective positioning performance,which usually involves high cost in labor and time.To solve these problems,this paper proposed a incremental indoor localization method for device diversity issues,which keeps real-time update by training uncalibrated data that collected in localization.Experimental results show that the proposed method can increase the precision of overall indoor localization system,especially when error distance is between 3 and 5 meters.What’s more,this method possesses good advantage of timeliness compared with traditional indoor localization method on real BLE dataset.

Key words: Device diversity, Extreme learning machine, Incremental learning, Indoor localization, Internet of things

中图分类号: 

  • TP311
[1]WU T T,YUN Z,LIU Y,et al.BeiDou /GPS combination positioning methodology[J].Journal of Remote Sensing,2014,18(5):1087-1097.
[2]JAKUBSTREIT J.Summary of available indoor location techniques[J].IFAC-PapersOnLine,2016,49(25):311-317.
[3]ZHU J,LUO H,CHEN Z,et al.RSSI based Bluetooth low energy indoor positioning[C]∥International Conference on Indoor Positioning and Indoor Navigation.IEEE,2015:526-533.
[4]HE X,ALOI D N,LI J.Probabilistic Multi-Sensor Fusion Based Indoor Positioning System on a Mobile Device[J].Sensors,2015,15(12):31464-31481.
[5]LI W L,ILTIS R A,WIN M Z.A smartphone localization algorithm using RSSI and inertial sensor measurement fusion[C]∥Global Communications Conference.IEEE,2014:3335-3340.
[6]LUO Z J,WU W J,YANG M.MobileInternet:Terminal de- vices,networks and services[J].Chinese Journal of Computers,2011,34(11):2029-2051.(in Chinese)
罗舟军,吴文甲,杨明.移动互联网:终端、网络与服务[J].计算机学报,2011,34(11):2029-2051.
[7]ZHOU A Y,YANG B,JIN C Q,et al.Location-based services:Architecture and progress[J].Chinese Journal of Computers,2011,34(7):1155-1171.(in Chinese)
周傲英,杨彬,金澈清,等.基于位置的服务:架构与进展[J].计算机学报,2011,34(7):1155-1171.
[8]PAHLAVAN K,LI X,MAKELA J P.Indoor geolocation scien- ce and technology[M].IEEE Press,2002.
[9]GNTHER A,HOENE C.Measuring Round Trip Times to Determine the Distance Between WLAN Nodes[C]∥International Conference on Research in Networking.Springer Berlin Heidelberg,2005:768-779.
[10]HOENE C,WILLMANN J.Four-way TOA and software-based trilateration of IEEE 802.11 devices[C]∥International Symposium on Personal,Indoor and Mobile Radio Communications.IEEE,2008:1-6.
[11]LLOMBART M,CIURANA M,BARCELO-ARROYO F.On the scalability of a novel WLAN positioning system based on time of arrival measurements[C]∥Workshop on Positioning,Navigation and Communication,2008(Wpnc 2008).IEEE,2008:15-21.
[12]CIURANA M,BARCELO-ARROYO F,LLOMBART M.Im- proving the Performance of TOA Over Wireless Systems to Track Mobile Targets[C]∥IEEE International Conference on Communications Workshops,2009.IEEE,2009:1-6.
[13]SATHYAN T,HUMPHREY D,HEDLEY M.WASP:A System and Algorithms for Accurate Radio Localization Using Low-Cost Hardware[J].IEEE Transactions on Systems Man & Cybernetics Part C,2011,41(2):211-222.
[14]YOUSSEF M A,AGRAWALA A,SHANKAR A U.WLAN location determination via clustering and probability distributions[C]∥IEEE International Conference on Pervasive Computing and Communications.IEEE,2003:143-150.
[15]HE S,HU T,CHAN S H G.Contour-based Trilateration for In- door Fingerprinting Localization[C]∥ACM Conference on Embedded Networked Sensor Systems.ACM,2015:225-238.
[16]SJOBERG M,KOSKELA M,VIITANIEMI V,et al.Indoor location recognition using fusion of SVM-based visual classifiers[C]∥IEEE International Workshop on Machine Learning for Signal Processing.IEEE,2010:343-348.
[17]WU K,XIAO J,YI Y,et al.FILA:Fine-grained indoor localization[C]∥2012 Proceedings IEEE INFOCOM.IEEE,2012:2210-2218.
[18]SEN S,RADUNOVIC B,CHOUDHURY R R,et al.You are fa- cing the Mona Lisa:spot localization using PHY layer information[C]∥International Conference on Mobile Systems,Applications,and Services.ACM,2012:183-196.
[19]FANG S H,LIN T.Principal Component Localization in Indoor WLAN Environments[J].IEEE Transactions on Mobile Computing,2011,11(1):100-110.
[20]ZHENG V W,XIANG E W,YANG Q,et al.Transferring loca- lization models over time[C]∥National Conference on Artificial Intelligence.AAAI Press,2008:1421-1426.
[21]SUN Z,CHEN Y,QI J,et al.Adaptive Localization through Transfer Learning in Indoor Wi-Fi Environment[C]∥International Conference on Machine Learning and Applications.IEEE,2008:331-336.
[22]HAEBERLEN A,FLANNERY E,LADD A M,et al.Practical robust localization over large-scale 802.11wireless networks[C]∥ACM MOBICOM 2004,the 10th Annual International Conferences on Mobile Computing andNetworking.Philadelphia:ACM Press,2004:70-84.
[23]KJAERGAARD M B,MUNK C V.Hyperbolic location fingerprinting:A calibration-free solution for handling differences in signalstrength[C]∥Proc.of the IEEE Int’l Conf.on Pervasive Computing.Hong Kong:IEEE Press,2008:110-116.
[24]GU Y,JIANG X L,LIU J F,et al.Device adaptive wireless signal feature extraction and localization method[J].Journal of Software,2014,25(Suppl.(2)):12-20.(in Chinese)
谷洋,蒋鑫龙,刘军发,等.设备自适应的无线信号特征提取与定位方法[J].软件学报,2014,55(Suppl.(2)):12-20.
[25]TSUI A W,CHUANG Y H,CHU H H.Unsupervised Learning for Solving RSS Hardware Variance Problem in WiFi Localization[J].Mobile Networks and Applications,2009,14(5):677-691.
[26]HUANG G B,ZHU Q Y,SIEW C K.Extreme learning ma- chine:a new learning scheme of feedforward neural networks[C]∥IEEE International Joint Conference on Neural Networks,2004.IEEE,2005:985-990.
[27]HUANG G B,ZHU Q Y,SIEW C K.Extreme learning ma- chine:Theory and applications[J].Neurocomputing,2006,70(1-3):489-501.
[28]HUANG G B,CHEN L,SIEW C K.Universal approximation using incremental constructive feedforward networks with random hidden nodes[J].IEEE Transactions on Neural Networks,2006,17(4):879.
[29]HUANG G B,ZHOU H,DING X,et al.Extreme learning machine for regression and multiclass classification[J].IEEE Transactions on Systems Man & Cybernetics Part B Cybernetics A Publication of the IEEE Systems Man & Cybernetics Society,2012,42(2):513-529.
[30]CHUNG R K.Spectral graph theory[M].American Mathematical Society,1997.
[31]BELKIN M,MATVEEVA I,NIYOGI P.Regularization and Semi-supervised Learning on Large Graphs[M]∥Learning Theory.Springer Berlin Heidelberg,2004:624-638.
[32]BELKIN M,NIYOGI P,SINDHWANI V.Manifold Regularization:A Geometric Framework for Learning from Labeled and Unlabeled Examples[M].JMLR.org,2006.
[33]LIANG N Y,HUANG G B,SARATCHANDRAN P,et al.A fast and accurate online sequential learning algorithm for feedforward networks[J].IEEE Transactions on Neural Networks,2006,17(6):1411-1423.
[1] 邵子灏, 杨世宇, 马国杰.
室内信息服务的基础——低成本定位技术研究综述
Foundation of Indoor Information Services:A Survey of Low-cost Localization Techniques
计算机科学, 2022, 49(9): 228-235. https://doi.org/10.11896/jsjkx.210900260
[2] 唐清华, 王玫, 唐超尘, 刘鑫, 梁雯.
基于M2M相遇区的PDR室内定位方法
PDR Indoor Positioning Method Based on M2M Encounter Region
计算机科学, 2022, 49(9): 283-287. https://doi.org/10.11896/jsjkx.210800270
[3] 刘冬梅, 徐洋, 吴泽彬, 刘倩, 宋斌, 韦志辉.
基于边框距离度量的增量目标检测方法
Incremental Object Detection Method Based on Border Distance Measurement
计算机科学, 2022, 49(8): 136-142. https://doi.org/10.11896/jsjkx.220100132
[4] 张翀宇, 陈彦明, 李炜.
边缘计算中面向数据流的实时任务调度算法
Task Offloading Online Algorithm for Data Stream Edge Computing
计算机科学, 2022, 49(7): 263-270. https://doi.org/10.11896/jsjkx.210300195
[5] 周楚霖, 陈敬东, 黄凡.
基于无迹粒子滤波的WiFi-PDR融合室内定位技术
WiFi-PDR Fusion Indoor Positioning Technology Based on Unscented Particle Filter
计算机科学, 2022, 49(6A): 606-611. https://doi.org/10.11896/jsjkx.210700108
[6] 张翕然, 刘万平, 龙华.
物联网僵尸网络病毒的传播动力学模型与分析
Dynamic Model and Analysis of Spreading of Botnet Viruses over Internet of Things
计算机科学, 2022, 49(6A): 738-743. https://doi.org/10.11896/jsjkx.210300212
[7] 周天清, 岳亚莉.
超密集物联网络中多任务多步计算卸载算法研究
Multi-Task and Multi-Step Computation Offloading in Ultra-dense IoT Networks
计算机科学, 2022, 49(6): 12-18. https://doi.org/10.11896/jsjkx.211200147
[8] 董丹丹, 宋康.
RIS辅助双向物联网通信系统性能分析
Performance Analysis on Reconfigurable Intelligent Surface Aided Two-way Internet of Things Communication System
计算机科学, 2022, 49(6): 19-24. https://doi.org/10.11896/jsjkx.220100064
[9] 沈家芳, 钱丽萍, 杨超.
面向集能型中继窄带物联网的非正交多址接入和多维网络资源优化
Non-orthogonal Multiple Access and Multi-dimension Resource Optimization in EH Relay NB-IoT Networks
计算机科学, 2022, 49(5): 279-286. https://doi.org/10.11896/jsjkx.210400239
[10] 沈少朋, 马洪江, 张智恒, 周相兵, 朱春满, 温佐承.
多元时序上状态转移模式的三支漂移检测
Three-way Drift Detection for State Transition Pattern on Multivariate Time Series
计算机科学, 2022, 49(4): 144-151. https://doi.org/10.11896/jsjkx.210600045
[11] 张振超, 刘亚丽, 殷新春.
适用于物联网环境的无证书广义签密方案
New Certificateless Generalized Signcryption Scheme for Internet of Things Environment
计算机科学, 2022, 49(3): 329-337. https://doi.org/10.11896/jsjkx.201200256
[12] 张叶, 李志华, 王长杰.
基于核密度估计的轻量级物联网异常流量检测方法
Kernel Density Estimation-based Lightweight IoT Anomaly Traffic Detection Method
计算机科学, 2021, 48(9): 337-344. https://doi.org/10.11896/jsjkx.200600108
[13] 李贝贝, 宋佳芮, 杜卿芸, 何俊江.
DRL-IDS:基于深度强化学习的工业物联网入侵检测系统
DRL-IDS:Deep Reinforcement Learning Based Intrusion Detection System for Industrial Internet of Things
计算机科学, 2021, 48(7): 47-54. https://doi.org/10.11896/jsjkx.210400021
[14] 李嘉明, 赵阔, 屈挺, 刘晓翔.
基于知识图谱的区块链物联网领域研究分析
Research and Analysis of Blockchain Internet of Things Based on Knowledge Graph
计算机科学, 2021, 48(6A): 563-567. https://doi.org/10.11896/jsjkx.200600071
[15] 李丽, 郑嘉利, 罗文聪, 全艺璇.
基于近端策略优化的RFID室内定位算法
RFID Indoor Positioning Algorithm Based on Proximal Policy Optimization
计算机科学, 2021, 48(4): 274-281. https://doi.org/10.11896/jsjkx.200300028
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!