1. Ottaway B.S.Mixed Data Classification in Archaeology. ArchéoSciences, revue d'Archéométrie, vol. 5, no. 1, pp. 139-144, 1981. 2. Jin, R. and Liu, H.SWITCH: A Novel Approach to Ensemble Learning for Heterogeneous Data. In European Conference on Machine Learning, Springer, Berlin, Heidelberg, pp. 560-562, 2004. 3. Chen M., Mao S., andLiu Y.Big data: A Survey. Mobile networks and applications, vol. 19, no. 2, pp. 171-209, 2014. 4. Jirkovský, V. and Obitko, M.Semantic Heterogeneity Reduction for Big Data in Industrial Automation. ITAT, vol. 1214, 2014. 5. Wang L.Heterogeneous Data and Big Data Analytics. Automatic Control and Information Sciences, vol. 3, no. 1, pp. 8-15, 2017 6. Breckels L.M., Holden S.B., Wojnar D., Mulvey C.M., Christoforou A., Groen A., Trotter M.W., Kohlbacher O., Lilley K.S., andGatto L.Learning from heterogeneous data sources: an application in spatial proteomics. PLoS computational biology, vol. 12, no. 5, pp. e1004920, 2016. 7. Mune, A.R. and Bhura, S.A.An Analysis of Heterogeneous Data with Extreme Learning via Unsupervised Multiple Kernels. In2nd International Conference on Data, Engineering and Applications (IDEA), IEEE, pp. 1-7, 2020. 8. Abdullin, A. and Nasraoui, O.Clustering Heterogeneous Data Sets. In2012 Eighth Latin American Web Congress, IEEE, pp. 1-8, 2012. 9. Wei M., Chow T.W., andChan R.H.Clustering Heterogeneous Data with K-means by Mutual Information-based Unsupervised Feature Transformation. Entropy, vol. 17, no. 3, pp. 1535-1548, 2015. 10. Xiang L., Zhao G., Li Q., Hao W., andLi F.TUMK-ELM: a Fast Unsupervised Heterogeneous Data Learning Approach. IEEE Access, vol. 6, pp. 35305-35315, 2018. 11. Valdés J.J.Extreme Learning Machines with Heterogeneous Data Types. Neurocomputing, vol. 277, pp. 38-52, 2018. 12. Dey L., Verma I., Khurdiya A., andBharadwaja H.S.A Framework to Integrate Unstructured and Structured Data for Enterprise Analytics. InProceedings of the 16th International Conference on Information Fusion, IEEE, pp. 1988-1995, 2013. 13. Liu F., Zhang G., andLu J.Heterogeneous Unsupervised Domain Adaptation based on Fuzzy Feature Fusion. In2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), IEEE, pp. 1-6, 2017. 14. Zhao G., Xiang L., Zhu C., andLi F.Two-stage Unsupervised Multiple Kernel Extreme Learning Machine. In2018 International Joint Conference on Neural Networks (IJCNN), IEEE, pp. 1-6, 2018. 15. Ali N., Neagu D., andTrundle P.Classification of Heterogeneous Data based on Data Type Impact on Similarity. In UK Workshop on Computational Intelligence, Springer, Cham, pp. 252-263, 2018. 16. Zhu C., Cao L., andYin J.Unsupervised Heterogeneous Coupling Learning for Categorical Representation. IEEE transactions on pattern analysis and machine intelligence, vol. 44, no. 1, pp. 533-549, 2020. 17. Chaudhuri A., Samanta D., andSarma M.Two-stage Approach to Feature Set Optimization for Unsupervised Dataset with Heterogeneous Attributes. Expert Systems with Applications, vol. 172, pp. 114563, 2021. 18. Huang G.B., Zhou H., Ding X., andZhang R.Extreme Learning Machine for Regression and Multiclass Classification. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 42, no. 2, pp. 513-529, 2011 19. Bache, K. and Lichman, M.UCI Machine Learning Repository, http://archive.ics.uci.edu/ml/index.php, accessed by February 2022. |