Tacrine-Natural-Product Hybrids for Alzheimer’s Disease Therapy | Bentham Science
Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Tacrine-Natural-Product Hybrids for Alzheimer’s Disease Therapy

Author(s): María Jesús Oset-Gasque* and José Luis Marco-Contelles

Volume 27, Issue 26, 2020

Page: [4392 - 4400] Pages: 9

DOI: 10.2174/0929867325666180403151725

Price: $65

Open Access Journals Promotions 2
Abstract

Alzheimer’s disease (AD) is a complex, neurodegenerative pathology showing, among others, high cholinergic and neurotransmitter deficits, oxidative stress, inflammation, Aβ-aggregation resulting in senile plaques formation, and hyperphosphorylation of tau-protein leading to neurofibrillary tangles. Due to its multifactorial and complex nature, multitarget directed small-molecules able to simultaneously inhibit or bind diverse biological targets involved in the progress and development of AD are considered now the best therapeutic strategy to design new compounds for AD therapy. Among them, tacrine is a very well known standard-gold ligand, and natural products have been a traditional source of new agents for diverse therapeutic treatments. In this review, we will update recent developments of multitarget tacrinenatural products hybrids for AD therapy.

Keywords: Acetylcholinesterase, Alzheimer's disease, antioxidants, butyrylcholinesterase, multitarget-directed ligands, natural products, tacrine.

[1]
Sadowski, M.; Wisniewski, T. Disease modifying approaches for Alzheimer’s pathology. Curr. Pharm. Des., 2007, 13(19), 1943-1954.
[http://dx.doi.org/10.2174/138161207781039788] [PMID: 17627527]
[2]
Álvarez, A.; Opazo, C.; Alarcón, R.; Garrido, J.; Inestrosa, N.C. Acetylcholinesterase promotes the aggregation of amyloid-beta-peptide fragments by forming a complex with the growing fibrils. J. Mol. Biol., 1997, 272(3), 348-361.
[http://dx.doi.org/10.1006/jmbi.1997.1245] [PMID: 9325095]
[3]
Cummings, J.L. Treatment of Alzheimer’s disease: current and future therapeutic approaches. Rev. Neurol. Dis., 2004, 1(2), 60-69.
[PMID: 16400259]
[4]
Jarrott, B. Tacrine: In vivo veritas. Pharmacol. Res., 2017, 116, 29-31.
[http://dx.doi.org/10.1016/j.phrs.2016.12.033] [PMID: 28040533]
[5]
Lagadic-Gossmann, D.; Rissel, M.; Le Bot, M.A.; Guillouzo, A. Toxic effects of tacrine on primary hepatocytes and liver epithelial cells in culture. Cell Biol. Toxicol., 1998, 14(5), 361-373.
[http://dx.doi.org/10.1023/A:1007589808761] [PMID: 9808364]
[6]
Mount, C.; Downton, C. Alzheimer disease: progress or profit? Nat. Med., 2006, 12(7), 780-784.
[http://dx.doi.org/10.1038/nm0706-780] [PMID: 16829947]
[7]
Greig, N.H.; Utsuki, T.; Ingram, D.K.; Wang, Y.; Pepeu, G.; Scali, C.; Yu, Q.S.; Mamczarz, J.; Holloway, H.W.; Giordano, T.; Chen, D.; Furukawa, K.; Sambamurti, K.; Brossi, A.; Lahiri, D.K. Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer beta-amyloid peptide in rodent. Proc. Natl. Acad. Sci. USA, 2005, 102(47), 17213-17218.
[http://dx.doi.org/10.1073/pnas.0508575102] [PMID: 16275899]
[8]
Reid, G.A.; Chilukuri, N.; Darvesh, S. Butyrylcholinesterase and the cholinergic system. Neuroscience, 2013, 234, 53-68.
[http://dx.doi.org/10.1016/j.neuroscience.2012.12.054] [PMID: 23305761]
[9]
Podoly, E.; Shalev, D.E.; Shenhar-Tsarfaty, S.; Bennett, E.R.; Ben Assayag, E.; Wilgus, H.; Livnah, O.; Soreq, H. The butyrylcholinesterase K variant confers structurally derived risks for Alzheimer pathology. J. Biol. Chem., 2009, 284(25), 17170-17179.
[http://dx.doi.org/10.1074/jbc.M109.004952] [PMID: 19383604]
[10]
Thathiah, A.; De Strooper, B. The role of G protein-coupled receptors in the pathology of Alzheimer’s disease. Nat. Rev. Neurosci., 2011, 12(2), 73-87.
[http://dx.doi.org/10.1038/nrn2977] [PMID: 21248787]
[11]
Hamley, I.W. The amyloid beta peptide: a chemist’s perspective. Role in Alzheimer’s and fibrillization. Chem. Rev., 2012, 112(10), 5147-5192.
[http://dx.doi.org/10.1021/cr3000994] [PMID: 22813427]
[12]
Butini, S.; Brogi, S.; Novellino, E.; Campiani, G.; Ghosh, A.K.; Brindisi, M.; Gemma, S. The structural evolution of β-secretase inhibitors: a focus on the development of small-molecule inhibitors. Curr. Top. Med. Chem., 2013, 13(15), 1787-1807.
[http://dx.doi.org/10.2174/15680266113139990137] [PMID: 23931442]
[13]
Hong, L.; Koelsch, G.; Lin, X.; Wu, S.; Terzyan, S.; Ghosh, A.K.; Zhang, X.C.; Tang, J. Structure of the protease domain of memapsin 2 (beta-secretase) complexed with inhibitor. Science, 2000, 290(5489), 150-153.
[http://dx.doi.org/10.1126/science.290.5489.150] [PMID: 11021803]
[14]
Venugopal, C.; Demos, C.M.; Rao, K.S.; Pappolla, M.A.; Sambamurti, K. Beta-secretase: structure, function, and evolution. CNS Neurol. Disord. Drug Targets, 2008, 7(3), 278-294.
[http://dx.doi.org/10.2174/187152708784936626] [PMID: 18673212]
[15]
Bartolini, M.; Bertucci, C.; Cavrini, V.; Andrisano, V. beta-Amyloid aggregation induced by human acetylcholinesterase: inhibition studies. Biochem. Pharmacol., 2003, 65(3), 407-416.
[http://dx.doi.org/10.1016/S0006-2952(02)01514-9] [PMID: 12527333]
[16]
Danysz, W.; Parsons, C.G. Alzheimer’s disease, β-amyloid, glutamate, NMDA receptors and memantine--searching for the connections. Br. J. Pharmacol., 2012, 167(2), 324-352.
[http://dx.doi.org/10.1111/j.1476-5381.2012.02057.x] [PMID: 22646481]
[17]
Rosini, M.; Simoni, E.; Minarini, A.; Melchiorre, C. Multi-target design strategies in the context of Alzheimer’s disease: acetylcholinesterase inhibition and NMDA receptor antagonism as the driving forces. Neurochem. Res., 2014, 39(10), 1914-1923.
[http://dx.doi.org/10.1007/s11064-014-1250-1] [PMID: 24493627]
[18]
Thomas, D.D.; Ridnour, L.A.; Isenberg, J.S.; Flores-Santana, W.; Switzer, C.H.; Donzelli, S.; Hussain, P.; Vecoli, C.; Paolocci, N.; Ambs, S.; Colton, C.A.; Harris, C.C.; Roberts, D.D.; Wink, D.A. The chemical biology of nitric oxide: implications in cellular signaling. Free Radic. Biol. Med., 2008, 45(1), 18-31.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.03.020] [PMID: 18439435]
[19]
Storr, T.; Thompson, K.H.; Orvig, C. Design of targeting ligands in medicinal inorganic chemistry. Chem. Soc. Rev., 2006, 35(6), 534-544.
[http://dx.doi.org/10.1039/b514859f] [PMID: 16729147]
[20]
Cuajungco, M.P.; Fagét, K.Y. Zinc takes the center stage: its paradoxical role in Alzheimer’s disease. Brain Res. Brain Res. Rev., 2003, 41(1), 44-56.
[http://dx.doi.org/10.1016/S0165-0173(02)00219-9] [PMID: 12505647]
[21]
Finberg, J.P. Update on the pharmacology of selective inhibitors of MAO-A and MAO-B: focus on modulation of CNS monoamine neurotransmitter release. Pharmacol. Ther., 2014, 143(2), 133-152.
[http://dx.doi.org/10.1016/j.pharmthera.2014.02.010] [PMID: 24607445]
[22]
Song, M.S.; Matveychuk, D.; MacKenzie, E.M.; Duchcherer, M.; Mousseau, D.D.; Baker, G.B. An update on amine oxidase inhibitors: multifaceted drugs. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2013, 44, 118-124.
[http://dx.doi.org/10.1016/j.pnpbp.2013.02.001] [PMID: 23410524]
[23]
León, R.; García, A.G.; Marco-Contelles, J. Recent advances in the multitarget-directed ligands approach for the treatment of Alzheimer’s disease. Med. Res. Rev., 2013, 33(1), 139-189.
[http://dx.doi.org/10.1002/med.20248] [PMID: 21793014]
[24]
Dey, A.; Bhattacharya, R.; Mukherjee, A.; Pandey, D.K. Natural products against Alzheimer’s disease: Pharmaco-therapeutics and biotechnological interventions. Biotechnol. Adv., 2017, 35(2), 178-216.
[http://dx.doi.org/10.1016/j.biotechadv.2016.12.005] [PMID: 28043897]
[25]
Wu, W-Y.; Dai, Y.C.; Li, N.G.; Dong, Z.X.; Gu, T.; Shi, Z.H.; Xue, X.; Tang, Y.P.; Duan, J.A. Novel multitarget-directed tacrine derivatives as potential candidates for the treatment of Alzheimer’s disease. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 572-587.
[http://dx.doi.org/10.1080/14756366.2016.1210139] [PMID: 28133981]
[26]
Ismaili, L.; Refouvelet, B.; Benchekroun, M.; Brogi, S.; Brindisi, M.; Gemma, S.; Campiani, G.; Filipic, S.; Agbaba, D.; Esteban, G.; Unzeta, M.; Nikolic, K.; Butini, S.; Marco-Contelles, J. Multitarget compounds bearing tacrine- and donepezil-like structural and functional motifs for the potential treatment of Alzheimer’s disease. Prog. Neurobiol., 2017, 151, 4-34.
[http://dx.doi.org/10.1016/j.pneurobio.2015.12.003] [PMID: 26797191]
[27]
Tang, H.; Zhao, L.Z.; Zhao, H.T.; Huang, S.L.; Zhong, S.M.; Qin, J.K.; Chen, Z.F.; Huang, Z.S.; Liang, H. Hybrids of oxoisoaporphine-tacrine congeners: novel acetylcholinesterase and acetylcholinesterase-induced β-amyloid aggregation inhibitors. Eur. J. Med. Chem., 2011, 46(10), 4970-4979.
[http://dx.doi.org/10.1016/j.ejmech.2011.08.002] [PMID: 21871694]
[28]
Butini, S.; Brindisi, M.; Brogi, S.; Maramai, S.; Guarino, E.; Panico, A.; Saxena, A.; Chauhan, V.; Colombo, R.; Verga, L.; De Lorenzi, E.; Bartolini, M.; Andrisano, V.; Novellino, E.; Campiani, G.; Gemma, S. Multifunctional cholinesterase and amyloid Beta fibrillization modulators. Synthesis and biological investigation. ACS Med. Chem. Lett., 2013, 4(12), 1178-1182.
[http://dx.doi.org/10.1021/ml4002908] [PMID: 24900626]
[29]
Brogi, S.; Butini, S.; Maramai, S.; Colombo, R.; Verga, L.; Lanni, C.; De Lorenzi, E.; Lamponi, S.; Andreassi, M.; Bartolini, M.; Andrisano, V.; Novellino, E.; Campiani, G.; Brindisi, M.; Gemma, S. Disease-modifying anti-Alzheimer’s drugs: inhibitors of human cholinesterases interfering with β-amyloid aggregation. CNS Neurosci. Ther., 2014, 20(7), 624-632.
[http://dx.doi.org/10.1111/cns.12290] [PMID: 24935788]
[30]
Nepovimova, E.; Korabecny, J.; Dolezal, R.; Babkova, K.; Ondrejicek, A.; Jun, D.; Sepsova, V.; Horova, A.; Hrabinova, M.; Soukup, O.; Bukum, N.; Jost, P.; Muckova, L.; Kassa, J.; Malinak, D.; Andrs, M.; Kuca, K. Tacrine−trolox hybrids: A novel class of centrally active, nonhepatotoxic multi-target-directed ligands exerting anticholinesterase and antioxidant activities with low in vivo toxicity. J. Med. Chem., 2015, 58(22), 8985-9003.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01325] [PMID: 26503905]
[31]
Galdeano, C.; Viayna, E.; Sola, I.; Formosa, X.; Camps, P.; Badía, A.; Clos, M.V.; Relat, J.; Ratia, M.; Bartolini, M.; Mancini, F.; Andrisano, V.; Salmona, M.; Minguillón, C.; González-Muñoz, G.C.; Rodríguez-Franco, M.I.; Bidon-Chanal, A.; Luque, F.J.; Muñoz-Torrero, D. Huprine-tacrine heterodimers as anti-amyloidogenic compounds of potential interest against Alzheimer’s and prion diseases. J. Med. Chem., 2012, 55(2), 661-669.
[http://dx.doi.org/10.1021/jm200840c] [PMID: 22185619]
[32]
Viayna, E.; Solà, I.; Bartolini, M.; De Simone, A.; Tapia-Rojas, C.; Serrano, F.G.; Sabaté, R.; Juárez-Jiménez, J.; Pérez, B.; Luque, F.J.; Andrisano, V.; Clos, M.V.; Inestrosa, N.C.; Muñoz-Torrero, D. Synthesis and multitarget biological profiling of a novel family of rhein derivatives as disease-modifying anti-Alzheimer agents. J. Med. Chem., 2014, 57(6), 2549-2567.
[http://dx.doi.org/10.1021/jm401824w] [PMID: 24568372]
[33]
Chioua, M.; Pérez, M.; Bautista-Aguilera, O.M.; Yañez, M.; López, M.G.; Romero, A.; Cacabelos, R.; Brogi, S.; Butini, S.; Borrell, J.I. Marco-Contelles, J. Multipotent hupertacrines as non-toxic, cholinesterase inhibitors for the potential treatment of Alzheimer’s disease. Mini Rev. Med. Chem., 2015, 15, 648-658.
[http://dx.doi.org/10.2174/1389557515666150219130156] [PMID: 25694076]
[34]
Balmori, A.; Chioua, M.; Puig de la Bellacasa, R.; Estrada-Tejedor, R.; Ismaili, L.; Marco-Contelles, J.; Borrell, J.I. 5-Amino-6,7,8,9-tetrahydrobenzo[b][1,8]naphthyridin-2(1H)-one: The first example of a new family of Hupertacrines for Alzheimer’s disease therapy. Chem. Select., 2017, 2, 2605-2610.
[http://dx.doi.org/10.1002/slct.201700289]
[35]
Li, S.Y.; Wang, X.B.; Xie, S.S.; Jiang, N.; Wang, K.D.; Yao, H.Q.; Sun, H.B.; Kong, L.Y. Multifunctional tacrine-flavonoid hybrids with cholinergic, β-amyloid-reducing, and metal chelating properties for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2013, 69, 632-646.
[http://dx.doi.org/10.1016/j.ejmech.2013.09.024] [PMID: 24095756]
[36]
Xie, S.S.; Wang, X.B.; Li, J.Y.; Yang, L.; Kong, L.Y. Design, synthesis and evaluation of novel tacrine-coumarin hybrids as multifunctional cholinesterase inhibitors against Alzheimer’s disease. Eur. J. Med. Chem., 2013, 64, 540-553.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.051] [PMID: 23685572]
[37]
Li, S.Y.; Jiang, N.; Xie, S.S.; Wang, K.D.; Wang, X.B.; Kong, L.Y. Design, synthesis and evaluation of novel tacrine-rhein hybrids as multifunctional agents for the treatment of Alzheimer’s disease. Org. Biomol. Chem., 2014, 12(5), 801-814.
[http://dx.doi.org/10.1039/C3OB42010H] [PMID: 24310227]
[38]
Sun, Y.; Chen, J.; Chen, X.; Huang, L.; Li, X. Inhibition of cholinesterase and monoamine oxidase-B activity by Tacrine-Homoisoflavonoid hybrids. Bio. org. Med. Chem., 2013, 21(23), 7406-7417.
[http://dx.doi.org/10.1016/j.bmc.2013.09.050] [PMID: 24128814]
[39]
Fernández-Bachiller, M.I.; Pérez, C.; Monjas, L.; Rademann, J.; Rodríguez-Franco, M.I. New tacrine-4-oxo-4H-chromene hybrids as multifunctional agents for the treatment of Alzheimer’s disease, with cholinergic, antioxidant, and β-amyloid-reducing properties. J. Med. Chem., 2012, 55(3), 1303-1317.
[http://dx.doi.org/10.1021/jm201460y] [PMID: 22243648]
[40]
Spilovska, K.; Korabecny, J.; Sepsova, V.; Jun, D.; Hrabinova, M.; Jost, P.; Muckova, L.; Soukup, O.; Janockova, J.; Kucera, T.; Dolezal, R.; Mezeiova, E.; Kaping, D.; Kuca, K. Novel tacrine-scutellarin hybrids as multipotent anti-Alzheimer’s agents: Design, synthesis and biological evaluation. Molecules, 2017, 22(6), 1-22.
[http://dx.doi.org/10.3390/molecules22061006] [PMID: 28621747]
[41]
Chao, X.; He, X.; Yang, Y.; Zhou, X.; Jin, M.; Liu, S.; Cheng, Z.; Liu, P.; Wang, Y.; Yu, J.; Tan, Y.; Huang, Y.; Qin, J.; Rapposelli, S.; Pi, R. Design, synthesis and pharmacological evaluation of novel tacrine-caffeic acid hybrids as multi-targeted compounds against Alzheimer’s disease. Bioorg. Med. Chem. Lett., 2012, 22(20), 6498-6502.
[http://dx.doi.org/10.1016/j.bmcl.2012.08.036] [PMID: 22981331]
[42]
Fang, L.; Kraus, B.; Lehmann, J.; Heilmann, J.; Zhang, Y.; Decker, M. Design and synthesis of tacrine-ferulic acid hybrids as multi-potent anti-Alzheimer drug candidates. Bioorg. Med. Chem. Lett., 2008, 18(9), 2905-2909.
[http://dx.doi.org/10.1016/j.bmcl.2008.03.073] [PMID: 18406135]
[43]
(a)Fang, L.; Appenroth, D.; Decker, M.; Kiehntopf, M.; Roegler, C.; Deufel, T.; Fleck, C.; Peng, S.; Zhang, Y.; Lehmann, J. Synthesis and biological evaluation of NO-donor-tacrine hybrids as hepatoprotective anti-Alzheimer drug candidates. J. Med. Chem., 2008, 51(4), 713-716.
[http://dx.doi.org/10.1021/jm701491k] [PMID: 18232655]
(b)Chen, Y.; Sun, J.; Fang, L.; Liu, M.; Peng, S.; Liao, H.; Lehmann, J.; Zhang, Y. Tacrine-ferulic acid-nitric oxide (NO) donor trihybrids as potent, multifunctional acetyl- and butyrylcholinesterase inhibitors. J. Med. Chem., 2012, 55(9), 4309-4321.
[http://dx.doi.org/10.1021/jm300106z] [PMID: 22512543]
[44]
Fu, Y.; Mu, Y.; Lei, H.; Wang, P.; Li, X.; Leng, Q.; Han, L.; Qu, X.; Wang, Z.; Huang, X. Design, synthesis and evaluation of novel tacrine-ferulic acid hybrids as multifunctional drug candidates against Alzheimer’s disease. Molecules, 2016, 21(10), 1-10.
[http://dx.doi.org/10.3390/molecules21101338] [PMID: 27727187]
[45]
Chen, Y.; Lin, H.; Zhu, J.; Gu, K.; Li, Q.; He, S.; Lu, X.; Tan, R.; Pei, Y.; Wu, L.; Bian, Y.; Sun, H. Design, synthesis, in vitro and in vivo evaluation of tacrine–cinnamic acid hybrids as multi-target acetyl- and butyrylcholinesterase inhibitors against Alzheimer’s disease. RSC Advances, 2017, 7, 33851-33867.
[http://dx.doi.org/10.1039/C7RA04385F]
[46]
Marchiani, A.; Rozzo, C.; Fadda, A.; Delogu, G.; Ruzza, P. Curcumin and curcumin-like molecules: from spice to drugs. Curr. Med. Chem., 2014, 21(2), 204-222.
[http://dx.doi.org/10.2174/092986732102131206115810] [PMID: 23590716]
[47]
Pallauf, K.; Rimbach, G.; Rupp, P.M.; Chin, D.; Wolf, I.M.A. Resveratrol and lifespan in model organisms. Curr. Med. Chem., 2016, 23(41), 4639-4680.
[http://dx.doi.org/10.2174/0929867323666161024151233] [PMID: 27781945]
[48]
Liu, Z.; Fang, L.; Zhang, H.; Gou, S.; Chen, L. Design, synthesis and biological evaluation of multifunctional tacrine-curcumin hybrids as new cholinesterase inhibitors with metal ions-chelating and neuroprotective property. Bioorg. Med. Chem., 2017, 25(8), 2387-2398.
[http://dx.doi.org/10.1016/j.bmc.2017.02.049] [PMID: 28302511]
[49]
Jeřábek, J.; Uliassi, E.; Guidotti, L.; Korábečný, J.; Soukup, O.; Sepsova, V.; Hrabinova, M.; Kuča, K.; Bartolini, M.; Peña-Altamira, L.E.; Petralla, S.; Monti, B.; Roberti, M.; Bolognesi, M.L. Tacrine-resveratrol fused hybrids as multi-target-directed ligands against Alzheimer’s disease. Eur. J. Med. Chem., 2017, 127, 250-262.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.048] [PMID: 28064079]
[50]
Panek, D.; Wichur, T.; Godyń, J.; Pasieka, A.; Malawska, B. Advances toward multifunctional cholinesterase and β-amyloid aggregation inhibitors. Future Med. Chem., 2017, 9(15), 1835-1854.
[http://dx.doi.org/10.4155/fmc-2017-0094] [PMID: 28925729]
[51]
Romero, A.; Cacabelos, R.; Oset-Gasque, M.J.; Samadi, A.; Marco-Contelles, J. Novel tacrine-related drugs as potential candidates for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. Lett., 2013, 23(7), 1916-1922.
[http://dx.doi.org/10.1016/j.bmcl.2013.02.017] [PMID: 23481643]
[52]
Martínez-Grau, A.; Marco, J.L. Friedländer reaction on 2-amino-3-cyano-4h-pyrans: synthesis of derivatives of 4h-pyran[2,3-b]-quinoline, new tacrine analogues. Bioorg. Med. Chem. Lett., 1997, 7, 3165-3170.
[http://dx.doi.org/10.1016/S0960-894X(97)10165-2]
[53]
Romero, A.; Marco-Contelles, J. Recent Developments on multi-target-directed tacrines for Alzheimer’s disease. I. The Pyranotacrines. Curr. Top. Med. Chem., 2017, 17(31), 3328-3335.
[http://dx.doi.org/10.2174/1568026618666180112155639] [PMID: 29332586]
[54]
Oset-Gasque, M.J. Marco-Contelles, J. New tacrines as anti-Alzheimer’s disease agents. II. The (Benzo)chromenopyranotacrines. Curr. Top. Med. Chem., 2017, 17, 3349-3360.
[http://dx.doi.org/10.2174/1568026618666180112155928] [PMID: 29332585]
[55]
Boulebd, H.; Ismaili, L.; Martin, H.; Bonet, A.; Chioua, M.; Marco Contelles, J.; Belfaitah, A. New (benz)imidazolopyridino tacrines as nonhepatotoxic, cholinesterase inhibitors for Alzheimer disease. Future Med. Chem., 2017, 9(8), 723-729.
[http://dx.doi.org/10.4155/fmc-2017-0019] [PMID: 28485637]
[56]
Minarini, A.; Milelli, A.; Simoni, E.; Rosini, M.; Bolognesi, M.L.; Marchetti, C.; Tumiatti, V. Multifunctional tacrine derivatives in Alzheimer’s disease. Curr. Top. Med. Chem., 2013, 13(15), 1771-1786.
[http://dx.doi.org/10.2174/15680266113139990136] [PMID: 23931443]
[57]
Tumiatti, V.; Minarini, A.; Bolognesi, M.L.; Milelli, A.; Rosini, M.; Melchiorre, C. Tacrine derivatives and Alzheimer’s disease. Curr. Med. Chem., 2010, 17(17), 1825-1838.
[http://dx.doi.org/10.2174/092986710791111206] [PMID: 20345341]
[58]
Cavalli, A.; Bolognesi, M.L.; Minarini, A.; Rosini, M.; Tumiatti, V.; Recanatini, M.; Melchiorre, C. Multi-target-directed ligands to combat neurodegenerative diseases. J. Med. Chem., 2008, 51(3), 347-372.
[http://dx.doi.org/10.1021/jm7009364] [PMID: 18181565]
[59]
Bolognesi, M.L.; Minarini, A.; Rosini, M.; Tumiatti, V.; Melchiorre, C. From dual binding site acetylcholinesterase inhibitors to multi-target-directed ligands (MTDLs): a step forward in the treatment of Alzheimer’s disease. Mini Rev. Med. Chem., 2008, 8(10), 960-967.
[http://dx.doi.org/10.2174/138955708785740652] [PMID: 18782050]
[60]
Chin, D.; Huebbe, P.; Pallauf, K.; Rimbach, G. Neuroprotective properties of curcumin in Alzheimer’s disease--merits and limitations. Curr. Med. Chem., 2013, 20(32), 3955-3985.
[http://dx.doi.org/10.2174/09298673113209990210] [PMID: 23931272]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy