Arachidonic Acid Derivatives and Neuroinflammation | Bentham Science
Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Arachidonic Acid Derivatives and Neuroinflammation

Author(s): Era Gorica and Vincenzo Calderone*

Volume 21, Issue 2, 2022

Published on: 08 February, 2021

Page: [118 - 129] Pages: 12

DOI: 10.2174/1871527320666210208130412

Price: $65

Open Access Journals Promotions 2
Abstract

Neuroinflammation is characterized by dysregulated inflammatory responses localized within the brain and spinal cord. Neuroinflammation plays a pivotal role in the onset of several neurodegenerative disorders and is considered a typical feature of these disorders. Microglia perform primary immune surveillance and macrophage-like activities within the central nervous system. Activated microglia are predominant players in the central nervous system response to damage related to stroke, trauma, and infection. Moreover, microglial activation per se leads to a proinflammatory response and oxidative stress. During the release of cytokines and chemokines, cyclooxygenases and phospholipase A2 are stimulated. Elevated levels of these compounds play a significant role in immune cell recruitment into the brain. Cyclic phospholipase A2 plays a fundamental role in the production of prostaglandins by releasing arachidonic acid. In turn, arachidonic acid is biotransformed through different routes into several mediators that are endowed with pivotal roles in the regulation of inflammatory processes. Some experimental models of neuroinflammation exhibit an increase in cyclic phospholipase A2, leukotrienes, and prostaglandins such as prostaglandin E2, prostaglandin D2, or prostacyclin. However, findings on the role of the prostacyclin receptors have revealed that their signalling suppresses Th2-mediated inflammatory responses. In addition, other in vitro evidence suggests that prostaglandin E2 may inhibit the production of some inflammatory cytokines, attenuating inflammatory events such as mast cell degranulation or inflammatory leukotriene production. Based on these conflicting experimental data, the role of arachidonic acid derivatives in neuroinflammation remains a challenging issue.

Keywords: Neuroinflammation, arachidonic acid, arachidonic acid cascade, prostaglandin, prostacyclin, leukotrienes

Graphical Abstract
[1]
Ransohoff RM, Brown MA. Innate immunity in the central nervous system. J Clin Invest 2012; 122(4): 1164-71.
[http://dx.doi.org/10.1172/JCI58644] [PMID: 22466658]
[2]
O’Callaghan JP, Sriram K, Miller DB. Defining “neuroinflammation”. Ann N Y Acad Sci 2008; 1139: 318-30.
[http://dx.doi.org/10.1196/annals.1432.032] [PMID: 18991877]
[3]
Gilhus NE, Deuschl G. Neuroinflammation - a common thread in neurological disorders. Nat Rev Neurol 2019; 15(8): 429-30.
[http://dx.doi.org/10.1038/s41582-019-0227-8] [PMID: 31263256]
[4]
Pachter JS, de Vries HE, Fabry Z. The blood-brain barrier and its role in immune privilege in the central nervous system. J Neuropathol Exp Neurol 2003; 62(6): 593-604.
[http://dx.doi.org/10.1093/jnen/62.6.593] [PMID: 12834104]
[5]
Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 2007; 8(1): 57-69.
[http://dx.doi.org/10.1038/nrn2038] [PMID: 17180163]
[6]
McGeer PL, McGeer EG. Inflammation and the degenerative diseases of aging. Ann N Y Acad Sci 2004; 1035: 104-16.
[http://dx.doi.org/10.1196/annals.1332.007] [PMID: 15681803]
[7]
Kim C, Livne-Bar I, Gronert K, Sivak JM. Fair-weather friends: evidence of lipoxin dysregulation in neurodegeneration. Mol Nutr Food Res 2020; 64(4): e1801076.
[http://dx.doi.org/10.1002/mnfr.201801076] [PMID: 31797529]
[8]
van Furth R. Current view on the mononuclear phagocyte system. Immunobiology 1982; 161(3-4): 178-85.
[http://dx.doi.org/10.1016/S0171-2985(82)80072-7] [PMID: 7047368]
[9]
Tohidpour A, Morgun AV, Boitsova EB, et al. Neuroinflammation and infection: molecular mechanisms associated with dysfunction of neurovascular unit. Front Cell Infect Microbiol 2017; 7: 276.
[http://dx.doi.org/10.3389/fcimb.2017.00276] [PMID: 28676848]
[10]
Xu D, Omura T, Masaki N, et al. Increased arachidonic acid-containing phosphatidylcholine is associated with reactive microglia and astrocytes in the spinal cord after peripheral nerve injury. Sci Rep 2016; 6: 26427.
[http://dx.doi.org/10.1038/srep26427] [PMID: 27210057]
[11]
Ridet JL, Malhotra SK, Privat A, Gage FH. Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 1997; 20(12): 570-7.
[http://dx.doi.org/10.1016/S0166-2236(97)01139-9] [PMID: 9416670]
[12]
Pawate S, Bhat NR. Role of Glia in CNS Inflammation. Handbook of neurochemistry and molecular neurobiology. Boston, MA: Springer 2008; pp. 309-30.
[http://dx.doi.org/10.1007/978-0-387-30398-7_14]
[13]
Heneka MT. Microglia take centre stage in neurodegenerative disease. Nat Rev Immunol 2019; 19(2): 79-80.
[http://dx.doi.org/10.1038/s41577-018-0112-5] [PMID: 30610221]
[14]
Stella N, Estellés A, Siciliano J, et al. Interleukin-1 enhances the ATP-evoked release of arachidonic acid from mouse astrocytes. J Neurosci 1997; 17(9): 2939-46.
[http://dx.doi.org/10.1523/JNEUROSCI.17-09-02939.1997] [PMID: 9096130]
[15]
Mori M, Aihara M, Kume K, Hamanoue M, Kohsaka S, Shimizu T. Predominant expression of platelet-activating factor receptor in the rat brain microglia. J Neurosci 1996; 16(11): 3590-600.
[http://dx.doi.org/10.1523/JNEUROSCI.16-11-03590.1996] [PMID: 8642404]
[16]
Calder PC, Grimble RF. omega 3 polyunsaturated fatty acids, inflammation and immunity. World Rev Nutr Diet 2001; 88: 109-16.
[http://dx.doi.org/10.1159/000059774] [PMID: 11935943]
[17]
Farooqui AA, Horrocks LA. Phospholipase A2-generated lipid mediators in the brain: the good, the bad, and the ugly. Neuroscientist 2006; 12(3): 245-60.
[http://dx.doi.org/10.1177/1073858405285923] [PMID: 16684969]
[18]
Lee JG, Lee SH, Park DW, et al. Toll-like receptor 9-stimulated monocyte chemoattractant protein-1 is mediated via JNK-cytosolic phospholipase A2-ROS signaling. Cell Signal 2008; 20(1): 105-11.
[http://dx.doi.org/10.1016/j.cellsig.2007.09.003] [PMID: 17939949]
[19]
Furse KE, Pratt DA, Porter NA, Lybrand TP. Molecular dynamics simulations of arachidonic acid complexes with COX-1 and COX-2: insights into equilibrium behavior. 2007; 454(1): 42-54.
[20]
Bordin L, Priante G, Musacchio E, et al. Arachidonic acid-induced IL-6 expression is mediated by PKC α activation in osteoblastic cells. Biochemistry 2003; 42(15): 4485-91.
[http://dx.doi.org/10.1021/bi026842n] [PMID: 12693944]
[21]
Innis SM. Essential fatty acids in growth and development. Prog Lipid Res 1991; 30(1): 39-103.
[http://dx.doi.org/10.1016/0163-7827(91)90006-Q] [PMID: 1771170]
[22]
Kaur N, Chugh V, Gupta AK. Essential fatty acids as functional components of foods- a review. J Food Sci Technol 2014; 51(10): 2289-303.
[http://dx.doi.org/10.1007/s13197-012-0677-0] [PMID: 25328170]
[23]
Pejin B, Bianco A, Newmaster S, et al. Fatty acids of Rhodobryum ontariense (Bryaceae). Nat Prod Res 2012; 26(8): 696-702.
[http://dx.doi.org/10.1080/14786419.2010.550580] [PMID: 21895464]
[24]
Pejin B, Vujisic L, Sabovljevic M, Tesevic V, Vajs V. The moss Mnium hornum, a promising source of arachidonic acid. Chem Nat Compd 2012; 48: 120-1.
[http://dx.doi.org/10.1007/s10600-012-0175-7]
[25]
Pejin B, Vujisic L, Sabovljevic M, Tesevic V, Vajs V. Fatty acid chemistry of Atrichum undulatum and Hypnum andoi. Hem Ind 2012; 66(2): 207-9.
[http://dx.doi.org/10.2298/HEMIND110918074P]
[26]
Cook HW, McMaster CR. Fatty acid desaturation and chain elongation in eukaryotes.Biochemistry of Lipids, Lipoproteins and Membranes. 4th ed. Amsterdam: Elsevier 2002; pp. 181-204.
[http://dx.doi.org/10.1016/S0167-7306(02)36009-5]
[27]
Iljina M, Tosatto L, Choi ML, et al. Arachidonic acid mediates the formation of abundant alpha-helical multimers of alpha-synuclein. Sci Rep 2016; 6: 33928.
[http://dx.doi.org/10.1038/srep33928] [PMID: 27671749]
[28]
Rapoport SI. Arachidonic acid and the brain. J Nutr 2008; 138(12): 2515-20.
[http://dx.doi.org/10.1093/jn/138.12.2515] [PMID: 19022981]
[29]
Kim HW, Rapoport SI, Rao JS. Altered arachidonic acid cascade enzymes in postmortem brain from bipolar disorder patients. Mol Psychiatry 2011; 16(4): 419-28.
[http://dx.doi.org/10.1038/mp.2009.137] [PMID: 20038946]
[30]
Esposito G, Giovacchini G, Liow JS, et al. Imaging neuroinflammation in Alzheimer’s disease with radiolabeled arachidonic acid and PET. J Nucl Med 2008; 49(9): 1414-21.
[http://dx.doi.org/10.2967/jnumed.107.049619] [PMID: 18703605]
[31]
Bazan NG. Arachidonic acid in the modulation of excitable membrane function and at the onset of brain damage. Ann N Y Acad Sci 1989; 559(1): 1-16.
[http://dx.doi.org/10.1111/j.1749-6632.1989.tb22594.x] [PMID: 2672938]
[32]
Kalyvas A, David S. Cytosolic phospholipase A2 plays a key role in the pathogenesis of multiple sclerosis-like disease. Neuron 2004; 41(3): 323-35.
[http://dx.doi.org/10.1016/S0896-6273(04)00003-0] [PMID: 14766173]
[33]
Hanna VS, Hafez EAA. Synopsis of arachidonic acid metabolism: A review. J Adv Res 2018; 11: 23-32.
[http://dx.doi.org/10.1016/j.jare.2018.03.005] [PMID: 30034873]
[34]
Ricciotti E, FitzGerald GA. Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol 2011; 31(5): 986-1000.
[http://dx.doi.org/10.1161/ATVBAHA.110.207449] [PMID: 21508345]
[35]
Smith WL, Garavito RM, DeWitt DL. Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and -2. J Biol Chem 1996; 271(52): 33157-60.
[http://dx.doi.org/10.1074/jbc.271.52.33157] [PMID: 8969167]
[36]
Goldbatt MW. Properties of human seminal plasma. 1935; 208-18.
[37]
Flower RJ. Prostaglandins, bioassay and inflammation. Br J Pharmacol 2006; 147(Suppl. 1): S182-92.
[http://dx.doi.org/10.1038/sj.bjp.0706506] [PMID: 16402103]
[38]
Thomas DW, Rocha PN, Nataraj C, et al. Proinflammatory actions of thromboxane receptors to enhance cellular immune responses. J Immunol 2003; 171(12): 6389-95.
[http://dx.doi.org/10.4049/jimmunol.171.12.6389] [PMID: 14662837]
[39]
Kelley VE, Sneve S, Musinski S. Increased renal thromboxane production in murine lupus nephritis. J Clin Invest 1986; 77(1): 252-9.
[http://dx.doi.org/10.1172/JCI112284] [PMID: 3455932]
[40]
Foegh ML, Winchester JF, Zmudka M, Helfrich GB, Ramwell PW, Schreiner GE. Aspirin inhibition of thromboxane release in thrombosis and renal transplant rejection. Lancet 1982; 1(8262): 48-9.
[http://dx.doi.org/10.1016/S0140-6736(82)92593-4] [PMID: 6119441]
[41]
Patrono C, Ciabattoni G, Remuzzi G, et al. Functional significance of renal prostacyclin and thromboxane A2 production in patients with systemic lupus erythematosus. J Clin Invest 1985; 76(3): 1011-8.
[http://dx.doi.org/10.1172/JCI112053] [PMID: 3900132]
[42]
Morel A, Miller E, Bijak M, Saluk J. The increased level of COX-dependent arachidonic acid metabolism in blood platelets from secondary progressive multiple sclerosis patients. Mol Cell Biochem 2016; 420(1-2): 85-94.
[http://dx.doi.org/10.1007/s11010-016-2770-6] [PMID: 27507559]
[43]
Park P, Lodowski DT, Placzewski K. Activation of G protein–coupled receptors: beyond two-state models and tertiary conformational changes. 2008; 48: 107-41.
[http://dx.doi.org/10.1146/annurev.pharmtox.48.113006.094630]
[44]
Schuhmann MU, Mokhtarzadeh M, Stichtenoth DO, et al. Temporal profiles of cerebrospinal fluid leukotrienes, brain edema and inflammatory response following experimental brain injury. Neurol Res 2003; 25(5): 481-91.
[http://dx.doi.org/10.1179/016164103101201896] [PMID: 12866196]
[45]
Wang ML, Huang XJ, Fang SH, et al. Leukotriene D4 induces brain edema and enhances CysLT2 receptor-mediated aquaporin 4 expression. Biochem Biophys Res Commun 2006; 350(2): 399-404.
[http://dx.doi.org/10.1016/j.bbrc.2006.09.057] [PMID: 17010308]
[46]
Zakharov S, Kotikova K, Nurieva O, et al. Leukotriene-mediated neuroinflammation, toxic brain damage, and neurodegeneration in acute methanol poisoning. Clin Toxicol (Phila) 2017; 55(4): 249-59.
[http://dx.doi.org/10.1080/15563650.2017.1284332] [PMID: 28165820]
[47]
Corser-Jensen CE, Goodell DJ, Freund RK, et al. Blocking leukotriene synthesis attenuates the pathophysiology of traumatic brain injury and associated cognitive deficits. Exp Neurol 2014; 256: 7-16.
[http://dx.doi.org/10.1016/j.expneurol.2014.03.008] [PMID: 24681156]
[48]
Nicolaou A, Mauro C, Urquhart P, Marelli-Berg F. Polyunsaturated Fatty Acid-derived lipid mediators and T cell function. Front Immunol 2014; 5: 75.
[http://dx.doi.org/10.3389/fimmu.2014.00075] [PMID: 24611066]
[49]
Boiti C, Zampini D, Zerani M, Guelfi G, Gobbetti A. Prostaglandin receptors and role of G protein-activated pathways on corpora lutea of pseudopregnant rabbit in vitro. J Endocrinol 2001; 168(1): 141-51.
[http://dx.doi.org/10.1677/joe.0.1680141] [PMID: 11139778]
[50]
Yan A, Zhang T, Yang X, et al. Thromboxane A2 receptor antagonist SQ29548 reduces ischemic stroke-induced microglia/macrophages activation and enrichment, and ameliorates brain injury. Sci Rep 2016; 6: 35885.
[http://dx.doi.org/10.1038/srep35885] [PMID: 27775054]
[51]
Sriram K, Matheson JM, Benkovic SA, Miller DB, Luster MI, O’Callaghan JP. Mice deficient in TNF receptors are protected against dopaminergic neurotoxicity: implications for Parkinson’s disease. FASEB J 2002; 16(11): 1474-6.
[http://dx.doi.org/10.1096/fj.02-0216fje] [PMID: 12205053]
[52]
Vezzani A, Balosso S, Ravizza T. Neuroinflammatory pathways as treatment targets and biomarkers in epilepsy. Nat Rev Neurol 2019; 15(8): 459-72.
[http://dx.doi.org/10.1038/s41582-019-0217-x] [PMID: 31263255]
[53]
Shi J, Johansson J, Woodling NS, Wang Q, Montine TJ, Andreasson K. The prostaglandin E2 E-prostanoid 4 receptor exerts anti-inflammatory effects in brain innate immunity. J Immunol 2010; 184(12): 7207-18.
[http://dx.doi.org/10.4049/jimmunol.0903487] [PMID: 20483760]
[54]
Tachikawa M, Hosoya K, Terasaki T. Pharmacological significance of prostaglandin E2 and D2 transport at the brain barriers.Pharmacology of the blood brain barrier: targeting CNS Disorders. San Diego, Ca: Academic Press 2014; pp. 337-60.
[http://dx.doi.org/10.1016/bs.apha.2014.06.006]
[55]
Liang X, Wu L, Hand T, Andreasson K. Prostaglandin D2 mediates neuronal protection via the DP1 receptor. J Neurochem 2005; 92(3): 477-86.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02870.x] [PMID: 15659218]
[56]
Scher JU, Pillinger MH. 15d-PGJ2: the anti-inflammatory prostaglandin? Clin Immunol 2005; 114(2): 100-9.
[http://dx.doi.org/10.1016/j.clim.2004.09.008] [PMID: 15639643]
[57]
Phulwani NK, Feinstein DL, Gavrilyuk V, Akar C, Kielian T. 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) and ciglitazone modulate Staphylococcus aureus-dependent astrocyte activation primarily through a PPAR-γ-independent pathway. J Neurochem 2006; 99(5): 1389-402.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04183.x] [PMID: 17074064]
[58]
Monneret G, Gravel S, Diamond M, Rokach J, Powell WS. Prostaglandin D2 is a potent chemoattractant for human eosinophils that acts via a novel DP receptor. Blood 2001; 98(6): 1942-8.
[http://dx.doi.org/10.1182/blood.V98.6.1942] [PMID: 11535533]
[59]
Mohri I, Taniike M, Taniguchi H, et al. Prostaglandin D2-mediated microglia/astrocyte interaction enhances astrogliosis and demyelination in twitcher. J Neurosci 2006; 26(16): 4383-93.
[http://dx.doi.org/10.1523/JNEUROSCI.4531-05.2006] [PMID: 16624958]
[60]
Taniike M, Mohri I, Eguchi N, Beuckmann CT, Suzuki K, Urade Y. Perineuronal oligodendrocytes protect against neuronal apoptosis through the production of lipocalin-type prostaglandin D synthase in a genetic demyelinating model. J Neurosci 2002; 22(12): 4885-96.
[http://dx.doi.org/10.1523/JNEUROSCI.22-12-04885.2002] [PMID: 12077186]
[61]
Tanioka T, Nakatani Y, Semmyo N, Murakami M, Kudo I. Molecular identification of cytosolic prostaglandin E2 synthase that is functionally coupled with cyclooxygenase-1 in immediate prostaglandin E2 biosynthesis. J Biol Chem 2000; 275(42): 32775-82.
[http://dx.doi.org/10.1074/jbc.M003504200] [PMID: 10922363]
[62]
Tanikawa N, Ohmiya Y, Ohkubo H, et al. Identification and characterization of a novel type of membrane-associated prostaglandin E synthase. Biochem Biophys Res Commun 2002; 291(4): 884-9.
[http://dx.doi.org/10.1006/bbrc.2002.6531] [PMID: 11866447]
[63]
Gudis K, Sakamoto C. The role of cyclooxygenase in gastric mucosal protection. Dig Dis Sci 2005; 50(Suppl. 1): S16-23.
[http://dx.doi.org/10.1007/s10620-005-2802-7] [PMID: 16184416]
[64]
Brenneis C, Coste O, Altenrath K, et al. Anti-inflammatory role of microsomal prostaglandin E synthase-1 in a model of neuroinflammation. J Biol Chem 2011; 286(3): 2331-42.
[http://dx.doi.org/10.1074/jbc.M110.157362] [PMID: 21075851]
[65]
Lehnardt S, Massillon L, Follett P, et al. Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc Natl Acad Sci USA 2003; 100(14): 8514-9.
[http://dx.doi.org/10.1073/pnas.1432609100] [PMID: 12824464]
[66]
Gasser HS, Grundfest H, Fibers A. Action and excitability in mammalian a fibers. Am J Physiol 1936; 117(1): 113-33.
[http://dx.doi.org/10.1152/ajplegacy.1936.117.1.113]
[67]
Montine TJ, Milatovic D, Gupta RC, Valyi-Nagy T, Morrow JD, Breyer RM. Neuronal oxidative damage from activated innate immunity is EP2 receptor-dependent. J Neurochem 2002; 83(2): 463-70.
[http://dx.doi.org/10.1046/j.1471-4159.2002.01157.x] [PMID: 12423256]
[68]
Catlin J, Leclerc JL, Shukla K, Marini SM, Doré S. Role of the PGE2 receptor subtypes EP1, EP2, and EP3 in repetitive traumatic brain injury. CNS Neurosci Ther 2019; 00: 1-8.
[PMID: 31617678]
[69]
Carlson NG, Rojas MA, Black JD, et al. Microglial inhibition of neuroprotection by antagonists of the EP1 prostaglandin E2 receptor. J Neuroinflammation 2009; 6: 5.
[http://dx.doi.org/10.1186/1742-2094-6-5] [PMID: 19222857]
[70]
Ahmad AS, Saleem S, Ahmad M, Doré S. Prostaglandin EP1 receptor contributes to excitotoxicity and focal ischemic brain damage. Toxicol Sci 2006; 89(1): 265-70.
[http://dx.doi.org/10.1093/toxsci/kfj022] [PMID: 16237196]
[71]
Kawano T, Anrather J, Zhou P, et al. Prostaglandin E2 EP1 receptors: downstream effectors of COX-2 neurotoxicity. Nat Med 2006; 12(2): 225-9.
[http://dx.doi.org/10.1038/nm1362] [PMID: 16432513]
[72]
Esaki Y, Li Y, Sakata D, et al. Dual roles of PGE2-EP4 signaling in mouse experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA 2010; 107(27): 12233-8.
[http://dx.doi.org/10.1073/pnas.0915112107] [PMID: 20566843]
[73]
Carlson NG, Rojas MA, Redd JW, et al. Cyclooxygenase-2 expression in oligodendrocytes increases sensitivity to excitotoxic death. J Neuroinflammation 2010; 7: 25.
[http://dx.doi.org/10.1186/1742-2094-7-25] [PMID: 20388219]
[74]
Carlson NG, Bellamkonda S, Schmidt L, et al. The role of the prostaglandin E2 receptors in vulnerability of oligodendrocyte precursor cells to death. J Neuroinflammation 2015; 12(1): 101.
[http://dx.doi.org/10.1186/s12974-015-0323-7] [PMID: 25997851]
[75]
Legler DF, Krause P, Scandella E, Singer E, Groettrup M. Prostaglandin E2 is generally required for human dendritic cell migration and exerts its effect via EP2 and EP4 receptors. J Immunol 2006; 176(2): 966-73.
[http://dx.doi.org/10.4049/jimmunol.176.2.966] [PMID: 16393982]
[76]
Krause P, Bruckner M, Uermösi C, Singer E, Groettrup M, Legler DF. Prostaglandin E(2) enhances T-cell proliferation by inducing the costimulatory molecules OX40L, CD70, and 4-1BBL on dendritic cells. Blood 2009; 113(11): 2451-60.
[http://dx.doi.org/10.1182/blood-2008-05-157123] [PMID: 19029446]
[77]
Harris SG, Padilla J, Koumas L, Ray D, Phipps RP. Prostaglandins as modulators of immunity. Trends Immunol 2002; 23(3): 144-50.
[http://dx.doi.org/10.1016/S1471-4906(01)02154-8] [PMID: 11864843]
[78]
Egan KM, Lawson JA, Fries S, et al. COX-2-derived prostacyclin confers atheroprotection on female mice. Science 2004; 306(5703): 1954-7.
[http://dx.doi.org/10.1126/science.1103333] [PMID: 15550624]
[79]
Noda M, Kariura Y, Pannasch U, et al. Neuroprotective role of bradykinin because of the attenuation of pro-inflammatory cytokine release from activated microglia. J Neurochem 2007; 101(2): 397-410.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04339.x] [PMID: 17402969]
[80]
Caggiano AO, Kraig RP. Prostaglandin E2 and 4-Aminopyridine prevent the outwardly rectifying potassium current and Interleukin-1β production in cultured rat microglia. J Neurochem 1998; 70(6): 2357-68.
[http://dx.doi.org/10.1046/j.1471-4159.1998.70062357.x] [PMID: 9603200]
[81]
Li W, Wu S, Hickey RW, Rose ME, Chen J, Graham SH. Neuronal cyclooxygenase-2 activity and prostaglandins PGE2, PGD2, and PGF2 α exacerbate hypoxic neuronal injury in neuron-enriched primary culture. Neurochem Res 2008; 33(3): 490-9.
[http://dx.doi.org/10.1007/s11064-007-9462-2] [PMID: 17763946]
[82]
Watanabe K, Yoshida R, Shimizu T, Hayaishi O. Enzymatic formation of prostaglandin F2 alpha from prostaglandin H2 and D2. Purification and properties of prostaglandin F synthetase from bovine lung. J Biol Chem 1985; 260(11): 7035-41.
[PMID: 3858278]
[83]
Silvestri C, Martella A, Poloso NJ, et al. Anandamide-derived prostamide F2α negatively regulates adipogenesis. J Biol Chem 2013; 288(32): 23307-21.
[http://dx.doi.org/10.1074/jbc.M113.489906] [PMID: 23801328]
[84]
Scali C, Prosperi C, Bracco L, et al. Neutrophils CD11b and fibroblasts PGE(2) are elevated in Alzheimer’s disease. Neurobiol Aging 2002; 23(4): 523-30.
[http://dx.doi.org/10.1016/S0197-4580(01)00346-3] [PMID: 12009501]
[85]
Casadesus G, Smith MA, Basu S, et al. Increased isoprostane and prostaglandin are prominent in neurons in Alzheimer disease. Mol Neurodegener 2007; 2(1): 2.
[http://dx.doi.org/10.1186/1750-1326-2-2] [PMID: 17241462]
[86]
Glushakov AV, Robbins SW, Bracy CL, Narumiya S, Doré S. Prostaglandin F2α FP receptor antagonist improves outcomes after experimental traumatic brain injury. J Neuroinflammation 2013; 10: 132.
[http://dx.doi.org/10.1186/1742-2094-10-132] [PMID: 24172576]
[87]
Saleem S, Ahmad AS, Maruyama T, Narumiya S, Doré S. PGF(2α) FP receptor contributes to brain damage following transient focal brain ischemia. Neurotox Res 2009; 15(1): 62-70.
[http://dx.doi.org/10.1007/s12640-009-9007-3] [PMID: 19384589]
[88]
Siegle I, Klein T, Zou MH, Fritz P, Kömhoff M. Distribution and cellular localization of prostacyclin synthase in human brain. J Histochem Cytochem 2000; 48(5): 631-41.
[http://dx.doi.org/10.1177/002215540004800507] [PMID: 10769047]
[89]
Satoh T, Ishikawa Y, Kataoka Y, et al. CNS-specific prostacyclin ligands as neuronal survival-promoting factors in the brain. Eur J Neurosci 1999; 11(9): 3115-24.
[http://dx.doi.org/10.1046/j.1460-9568.1999.00791.x] [PMID: 10510175]
[90]
Palumbo S, Toscano CD, Parente L, Weigert R, Bosetti F. Time-dependent changes in the brain arachidonic acid cascade during cuprizone-induced demyelination and remyelination. Prostaglandins Leukot Essent Fatty Acids 2011; 85(1): 29-35.
[http://dx.doi.org/10.1016/j.plefa.2011.04.001] [PMID: 21530210]
[91]
Palumbo S, Toscano CD, Parente L, Weigert R, Bosetti F. The cyclooxygenase-2 pathway via the PGE2 EP2 receptor contributes to oligodendrocytes apoptosis in cuprizone-induced demyelination. J Neurochem 2012; 121(3): 418-27.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07363.x] [PMID: 21699540]
[92]
Dore-Duffy P, Ho SY, Donovan C. Cerebrospinal fluid eicosanoid levels: endogenous PGD2 and LTC4 synthesis by antigen-presenting cells that migrate to the central nervous system. Neurology 1991; 41(2 ( Pt 1)): 322-4.
[http://dx.doi.org/10.1212/WNL.41.2_Part_1.322] [PMID: 1992386]
[93]
Kihara Y, Matsushita T, Kita Y, et al. Targeted lipidomics reveals mPGES-1-PGE2 as a therapeutic target for multiple sclerosis. Proc Natl Acad Sci USA 2009; 106(51): 21807-12.
[http://dx.doi.org/10.1073/pnas.0906891106] [PMID: 19995978]
[94]
Bolton C, Turner AM, Turk JL. Prostaglandin levels in cerebrospinal fluid from multiple sclerosis patients in remission and relapse. J Neuroimmunol 1984; 6(3): 151-9.
[http://dx.doi.org/10.1016/0165-5728(84)90002-X] [PMID: 6586729]
[95]
Stitham J, Midgett C, Martin KA, Hwa J. Prostacyclin: an inflammatory paradox. Front Pharmacol 2011; 2(2): 24.
[PMID: 21687516]
[96]
Tsai MJ, Weng CF, Yu NC, et al. Enhanced prostacyclin synthesis by adenoviral gene transfer reduced glial activation and ameliorated dopaminergic dysfunction in hemiparkinsonian rats. Oxid Med Cell Longev 2013; 2013: 649809.
[http://dx.doi.org/10.1155/2013/649809] [PMID: 23691265]
[97]
Wang P, Guan PP, Yu X, Zhang LC, Su YN, Wang ZY. Prostaglandin I2 attenuates prostaglandin E2-stimulated Eexpression of interferon γ in a β-amyloid protein- and NF-κB-dependent mechanism. Sci Rep 2016; 6(1): 1-16.
[PMID: 28442746]
[98]
He T, Santhanam AVR, Lu T, d’Uscio LV, Katusic ZS. Role of prostacyclin signaling in endothelial production of soluble amyloid precursor protein-α in cerebral microvessels. J Cereb Blood Flow Metab 2017; 37(1): 106-22.
[http://dx.doi.org/10.1177/0271678X15618977] [PMID: 26661245]
[99]
Sengillo JD, Winkler EA, Walker CT, Sullivan JS, Johnson M, Zlokovic BV. Deficiency in mural vascular cells coincides with blood-brain barrier disruption in Alzheimer’s disease. Brain Pathol 2013; 23(3): 303-10.
[http://dx.doi.org/10.1111/bpa.12004] [PMID: 23126372]
[100]
Muramatsu R, Kuroda M, Matoba K, et al. Prostacyclin prevents pericyte loss and demyelination induced by lysophosphatidylcholine in the central nervous system. J Biol Chem 2015; 290(18): 11515-25.
[http://dx.doi.org/10.1074/jbc.M114.587253] [PMID: 25795781]
[101]
Takamatsu H, Tsukada H, Watanabe Y, et al. Specific ligand for a central type prostacyclin receptor attenuates neuronal damage in a rat model of focal cerebral ischemia. Brain Res 2002; 925(2): 176-82.
[http://dx.doi.org/10.1016/S0006-8993(01)03280-2] [PMID: 11792366]
[102]
Wacker MJ, Tevis O, Hanke J, Howard T, Gilbert W, Orr JA. Characterization of thromboxane A2 receptor and TRPV1 mRNA expression in cultured sensory neurons. Neurosci Lett 2012; 515(1): 12-7.
[http://dx.doi.org/10.1016/j.neulet.2012.02.092] [PMID: 22425716]
[103]
Obara Y, Kurose H, Nakahata N. Thromboxane A2 promotes interleukin-6 biosynthesis mediated by an activation of cyclic AMP-response element-binding protein in 1321N1 human astrocytoma cells. Mol Pharmacol 2005; 68(3): 670-9.
[http://dx.doi.org/10.1124/mol.105.012922] [PMID: 15967875]
[104]
Herbst-Robinson KJ, Liu L, James M, Yao Y, Xie SX, Brunden KR. Inflammatory eicosanoids increase amyloid precursor protein expression via activation of multiple neuronal receptors. Sci Rep 2015; 5(1): 18286.
[http://dx.doi.org/10.1038/srep18286] [PMID: 26672557]
[105]
Shen MY, Hsiao G, Fong TH, et al. Amyloid beta peptide-activated signal pathways in human platelets. Eur J Pharmacol 2008; 588(2-3): 259-66.
[http://dx.doi.org/10.1016/j.ejphar.2008.04.040] [PMID: 18511035]
[106]
Soper JH, Sugiyama S, Herbst-Robinson K, et al. Brain-penetrant tetrahydronaphthalene thromboxane A2-prostanoid (TP) receptor antagonists as prototype therapeutics for Alzheimer’s disease. ACS Chem Neurosci 2012; 3(11): 928-40.
[http://dx.doi.org/10.1021/cn3000795] [PMID: 23173073]
[107]
Yu L, Yang B, Wang J, et al. Time course change of COX2-PGI2/TXA2 following global cerebral ischemia reperfusion injury in rat hippocampus. Behav Brain Funct 2014; 10(1): 42.
[http://dx.doi.org/10.1186/1744-9081-10-42] [PMID: 25388440]
[108]
Winking M, Deinsberger W, Jödicke A, Böker DK. [Leukotriene synthesis after intracerebral hemorrhage: a further indicator for their pathophysiologic significance in the CNS]. Zentralbl Neurochir 1998; 59(2): 113-20.
[PMID: 9674101]
[109]
Mayer M. Effect of calcium ionophore A23187 and of leukotrienes B4 and C4 on the adherence of mononuclear leucocytes in multiple sclerosis. Folia Biol (Praha) 1988; 34(1): 10-7.
[PMID: 2839380]
[110]
Ciccarelli R, D’Alimonte I, Santavenere C, et al. Cysteinyl-leukotrienes are released from astrocytes and increase astrocyte proliferation and glial fibrillary acidic protein via cys-LT1 receptors and mitogen-activated protein kinase pathway. Eur J Neurosci 2004; 20(6): 1514-24.
[http://dx.doi.org/10.1111/j.1460-9568.2004.03613.x] [PMID: 15355318]
[111]
Ballerini P, Di Iorio P, Ciccarelli R, et al. P2Y1 and cysteinyl leukotriene receptors mediate purine and cysteinyl leukotriene co-release in primary cultures of rat microglia. Int J Immunopathol Pharmacol 2005; 18(2): 255-68.
[http://dx.doi.org/10.1177/039463200501800208] [PMID: 15888248]
[112]
Ballerini P, Ciccarelli R, Caciagli F, et al. P2X7 receptor activation in rat brain cultured astrocytes increases the biosynthetic release of cysteinyl leukotrienes. Int J Immunopathol Pharmacol 2005; 18(3): 417-30.
[http://dx.doi.org/10.1177/039463200501800303] [PMID: 16164825]
[113]
Chuang DY, Simonyi A, Kotzbauer PT, Gu Z, Sun GY. Cytosolic phospholipase A2 plays a crucial role in ROS/NO signaling during microglial activation through the lipoxygenase pathway. J Neuroinflammation 2015; 12(1): 199.
[http://dx.doi.org/10.1186/s12974-015-0419-0] [PMID: 26520095]
[114]
Singh RK. Antagonism of cysteinyl leukotrienes and their receptors as a neuroinflammatory target in Alzheimer’s disease. Neurol Sci 2020; 41(8): 2081-93.
[http://dx.doi.org/10.1007/s10072-020-04369-7] [PMID: 32281039]
[115]
Klegeris A, McGeer PL. Toxicity of human monocytic THP-1 cells and microglia toward SH-SY5Y neuroblastoma cells is reduced by inhibitors of 5-lipoxygenase and its activating protein FLAP. J Leukoc Biol 2003; 73(3): 369-78.
[http://dx.doi.org/10.1189/jlb.1002482] [PMID: 12629151]
[116]
Ikonomovic MD, Abrahamson EE, Uz T, Manev H, Dekosky ST. Increased 5-lipoxygenase immunoreactivity in the hippocampus of patients with Alzheimer’s disease. J Histochem Cytochem 2008; 56(12): 1065-73.
[http://dx.doi.org/10.1369/jhc.2008.951855] [PMID: 18678882]
[117]
Chu J, Praticò D. Pharmacologic blockade of 5-lipoxygenase improves the amyloidotic phenotype of an Alzheimer’s disease transgenic mouse model involvement of γ-secretase. Am J Pathol 2011; 178(4): 1762-9.
[http://dx.doi.org/10.1016/j.ajpath.2010.12.032] [PMID: 21435457]
[118]
Michael J, Marschallinger J, Aigner L. The leukotriene signaling pathway: a druggable target in Alzheimer’s disease. Drug Discov Today 2019; 24(2): 505-16.
[http://dx.doi.org/10.1016/j.drudis.2018.09.008] [PMID: 30240876]
[119]
Iwamoto N, Kobayashi K, Kosaka K. The formation of prostaglandins in the postmortem cerebral cortex of Alzheimer-type dementia patients. J Neurol 1989; 236(2): 80-4.
[http://dx.doi.org/10.1007/BF00314401] [PMID: 2709057]
[120]
Mohri I, Kadoyama K, Kanekiyo T, et al. Hematopoietic prostaglandin D synthase and DP1 receptor are selectively upregulated in microglia and astrocytes within senile plaques from human patients and in a mouse model of Alzheimer disease. J Neuropathol Exp Neurol 2007; 66(6): 469-80.
[http://dx.doi.org/10.1097/01.jnen.0000240472.43038.27] [PMID: 17549007]
[121]
Combrinck M, Williams J, De Berardinis MA, et al. Levels of CSF prostaglandin E2, cognitive decline, and survival in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 2006; 77(1): 85-8.
[http://dx.doi.org/10.1136/jnnp.2005.063131] [PMID: 15944180]
[122]
Montine TJ, Sidell KR, Crews BC, et al. Elevated CSF prostaglandin E2 levels in patients with probable AD. Neurology 1999; 53(7): 1495-8.
[http://dx.doi.org/10.1212/WNL.53.7.1495] [PMID: 10534257]
[123]
Iłzecka J. Prostaglandin E2 is increased in amyotrophic lateral sclerosis patients. Acta Neurol Scand 2003; 108(2): 125-9.
[http://dx.doi.org/10.1034/j.1600-0404.2003.00102.x] [PMID: 12859290]
[124]
Almer G, Teismann P, Stevic Z, et al. Increased levels of the pro-inflammatory prostaglandin PGE2 in CSF from ALS patients. Neurology 2002; 58(8): 1277-9.
[http://dx.doi.org/10.1212/WNL.58.8.1277] [PMID: 11971099]
[125]
Minghetti L, Greco A, Cardone F, et al. Increased brain synthesis of prostaglandin E2and F2-Isoprostane in Human and Experimental Transmissible Spongiform Encephalopathies. J Neuropathol Exper 2000; 10(59): 866-71.
[http://dx.doi.org/10.1093/jnen/59.10.866]
[126]
Jin J, Shie F-Sh, Liu J, et al. Prostaglandin E2 receptor subtype 2 (EP2) regulates microglial activation and associated neurotoxicity induced by aggregated α-synuclein. J Neuroinflammation 2007; 4(1): 2.
[http://dx.doi.org/10.1186/1742-2094-4-2] [PMID: 17204153]
[127]
Lam MA, Maghzal GJ, Khademi M, et al. Absence of systemic oxidative stress and increased CSF prostaglandin F2α in progressive MS. Neurol Neuroimmunol Neuroinflamm 2016; 3(4): e256.
[http://dx.doi.org/10.1212/NXI.0000000000000256] [PMID: 27386506]
[128]
Neu I, Mallinger J, Wildfeuer A, Mehlber L. Leukotrienes in the cerebrospinal fluid of multiple sclerosis patients. Acta Neurol Scand 1992; 86(6): 586-7.
[http://dx.doi.org/10.1111/j.1600-0404.1992.tb05491.x] [PMID: 1336293]
[129]
Storer PD, Xu J, Chavis J, Drew PD. Peroxisome proliferator-activated receptor-gamma agonists inhibit the activation of microglia and astrocytes: implications for multiple sclerosis. J Neuroimmunol 2005; 161(1-2): 113-22.
[http://dx.doi.org/10.1016/j.jneuroim.2004.12.015] [PMID: 15748950]
[130]
Natarajan C, Muthian G, Barak Y, Evans RM, Bright JJ. Peroxisome proliferator-activated receptor-γ-deficient heterozygous mice develop an exacerbated neural antigen-induced Th1 response and experimental allergic encephalomyelitis. J Immunol 2003; 171(11): 5743-50.
[http://dx.doi.org/10.4049/jimmunol.171.11.5743] [PMID: 14634082]
[131]
Johansson J, Woodling N, Shi J, Andreasson K. Inflammatory cyclooxygenase activity and PGE2 signaling in models of Alzheimer’s disease. Curr Immunol Rev 2015; 11(2): 125-31.
[http://dx.doi.org/10.2174/1573395511666150707181414] [PMID: 28413375]
[132]
Shie F, Breyer R, Montine T. Microglia lacking e prostanoid receptor subtype 2 have enhanced Aβ phagocytosis yet lack Aβ-activated neurotoxicity. Am J Pathol 2005; 166(4): 1163-72.
[http://dx.doi.org/10.1016/S0002-9440(10)62336-X] [PMID: 15793296]
[133]
Shi J, Wang Q, Johansson J, et al. Inflammatory prostaglandin E2signaling in a mouse model of Alzheimer disease. Ann Neurol 2012; 72(5): 788-98.
[134]
Anglada-Huguet M, Xifró X, Giralt A, Zamora-Moratalla A, Martín ED, Alberch J. Prostaglandin E2 EP1 receptor antagonist improves motor deficits and rescues memory decline in R6/1 mouse model of Huntington’s disease. Mol Neurobiol 2014; 49(2): 784-95.
[http://dx.doi.org/10.1007/s12035-013-8556-x] [PMID: 24198227]
[135]
Liang X, Wang Q, Shi J, et al. The prostaglandin E2 EP2 receptor accelerates disease progression and inflammation in a model of amyotrophic lateral sclerosis. Ann Neurol 2008; 64(3): 304-14.
[http://dx.doi.org/10.1002/ana.21437] [PMID: 18825663]
[136]
Bilak M, Wu L, Wang Q, et al. PGE2 receptors rescue motor neurons in a model of amyotrophic lateral sclerosis. Ann Neurol 2004; 56(2): 240-8.
[http://dx.doi.org/10.1002/ana.20179] [PMID: 15293276]
[137]
Womack T, Vollert C, Nwoko O, et al. Prostacyclin promotes degenerative pathology in a model of Alzheimer’s disease. bioRxiv 2020; 1-19.
[138]
Whitney LW, Ludwin SK, McFarland HF, Biddison WE. Microarray analysis of gene expression in multiple sclerosis and EAE identifies 5-lipoxygenase as a component of inflammatory lesions. J Neuroimmunol 2001; 121(1-2): 40-8.
[http://dx.doi.org/10.1016/S0165-5728(01)00438-6] [PMID: 11730938]
[139]
Kang KH, Liou HH, Hour MJ, Liou HC, Fu WM. Protection of dopaminergic neurons by 5-lipoxygenase inhibitor. Neuropharmacology 2013; 73: 380-7.
[http://dx.doi.org/10.1016/j.neuropharm.2013.06.014] [PMID: 23800665]
[140]
Yoshikawa K, Palumbo S, Toscano CD, Bosetti F. Inhibition of 5-lipoxygenase activity in mice during cuprizone-induced demyelination attenuates neuroinflammation, motor dysfunction and axonal damage. Prostaglandins Leukot Essent Fatty Acids 2011; 85(1): 43-52.
[http://dx.doi.org/10.1016/j.plefa.2011.04.022] [PMID: 21555210]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy