Description:
The ground penetrating radar (GPR) is one of the most popular and successful sensing modalities that have been investigated for buried target detection (BTD). GPR offers excellent detection performance, however, it is limited by a low rate of advance (ROA) due to its short sensing standoff distance. Standoff distance refers to the distance between the sensing platform and the location in front of the platform where the GPR senses the ground. Large standoff (high ROA) sensing modalities have been investigated as alternatives to the GPR but they do not (yet) achieve comparable detection performance. Another strategy to improve the ROA of the GPR is to combine it with a large standoff sensor within the same BTD system, and to leverage the benefits of the respective modalities. This work investigates both of the aforementioned approaches to improve the ROA of GPR systems using statistical modeling techniques. The first part of the work investigates two large-standoff modalities for BTD systems. New detection algorithms are proposed in both cases with the goal of improving their detection performance so that it is more comparable with the GPR. The second part of the work investigates two methods of combining the GPR with a large standoff modality in order to yield a system with greater ROA, but similar target detection performance. All proposed statistical modeling approaches in this work are tested for efficacy using real field-collected data from BTD systems. The experimental results show that each of the proposed methods contribute towards the goal of improving the ROA of BTD systems.
Contributors:
Collins, Leslie M ; Nolte, Loren W
Year of Publication:
2015
Document Type:
Dissertation ; [Doctoral and postdoctoral thesis]
Subjects:
Artificial intelligence ; Statistics ; ground penetrating radar ; infrared ; landmine detection ; queuing theory ; sensor management
Content Provider:
Duke University Libraries: DukeSpace  Flag of United States of America