@inproceedings{onabola-etal-2021-hbert,
title = "h{BERT} + {B}ias{C}orp - Fighting Racism on the Web",
author = "Onabola, Olawale and
Ma, Zhuang and
Yang, Xie and
Akera, Benjamin and
Abdulrahman, Ibraheem and
Xue, Jia and
Liu, Dianbo and
Bengio, Yoshua",
editor = "Chakravarthi, Bharathi Raja and
McCrae, John P. and
Zarrouk, Manel and
Bali, Kalika and
Buitelaar, Paul",
booktitle = "Proceedings of the First Workshop on Language Technology for Equality, Diversity and Inclusion",
month = apr,
year = "2021",
address = "Kyiv",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.ltedi-1.4/",
pages = "26--33",
abstract = "Subtle and overt racism is still present both in physical and online communities today and has impacted many lives in different segments of the society. In this short piece of work, we present how we`re tackling this societal issue with Natural Language Processing. We are releasing BiasCorp, a dataset containing 139,090 comments and news segment from three specific sources - Fox News, BreitbartNews and YouTube. The first batch (45,000 manually annotated) is ready for publication. We are currently in the final phase of manually labeling the remaining dataset using Amazon Mechanical Turk. BERT has been used widely in several downstream tasks. In this work, we present hBERT, where we modify certain layers of the pretrained BERT model with the new Hopfield Layer. hBert generalizes well across different distributions with the added advantage of a reduced model complexity. We are also releasing a JavaScript library 3 and a Chrome Extension Application, to help developers make use of our trained model in web applications (say chat application) and for users to identify and report racially biased contents on the web respectively"
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="onabola-etal-2021-hbert">
<titleInfo>
<title>hBERT + BiasCorp - Fighting Racism on the Web</title>
</titleInfo>
<name type="personal">
<namePart type="given">Olawale</namePart>
<namePart type="family">Onabola</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhuang</namePart>
<namePart type="family">Ma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xie</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Benjamin</namePart>
<namePart type="family">Akera</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ibraheem</namePart>
<namePart type="family">Abdulrahman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jia</namePart>
<namePart type="family">Xue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dianbo</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yoshua</namePart>
<namePart type="family">Bengio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Language Technology for Equality, Diversity and Inclusion</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bharathi</namePart>
<namePart type="given">Raja</namePart>
<namePart type="family">Chakravarthi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">John</namePart>
<namePart type="given">P</namePart>
<namePart type="family">McCrae</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manel</namePart>
<namePart type="family">Zarrouk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paul</namePart>
<namePart type="family">Buitelaar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Kyiv</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Subtle and overt racism is still present both in physical and online communities today and has impacted many lives in different segments of the society. In this short piece of work, we present how we‘re tackling this societal issue with Natural Language Processing. We are releasing BiasCorp, a dataset containing 139,090 comments and news segment from three specific sources - Fox News, BreitbartNews and YouTube. The first batch (45,000 manually annotated) is ready for publication. We are currently in the final phase of manually labeling the remaining dataset using Amazon Mechanical Turk. BERT has been used widely in several downstream tasks. In this work, we present hBERT, where we modify certain layers of the pretrained BERT model with the new Hopfield Layer. hBert generalizes well across different distributions with the added advantage of a reduced model complexity. We are also releasing a JavaScript library 3 and a Chrome Extension Application, to help developers make use of our trained model in web applications (say chat application) and for users to identify and report racially biased contents on the web respectively</abstract>
<identifier type="citekey">onabola-etal-2021-hbert</identifier>
<location>
<url>https://aclanthology.org/2021.ltedi-1.4/</url>
</location>
<part>
<date>2021-04</date>
<extent unit="page">
<start>26</start>
<end>33</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T hBERT + BiasCorp - Fighting Racism on the Web
%A Onabola, Olawale
%A Ma, Zhuang
%A Yang, Xie
%A Akera, Benjamin
%A Abdulrahman, Ibraheem
%A Xue, Jia
%A Liu, Dianbo
%A Bengio, Yoshua
%Y Chakravarthi, Bharathi Raja
%Y McCrae, John P.
%Y Zarrouk, Manel
%Y Bali, Kalika
%Y Buitelaar, Paul
%S Proceedings of the First Workshop on Language Technology for Equality, Diversity and Inclusion
%D 2021
%8 April
%I Association for Computational Linguistics
%C Kyiv
%F onabola-etal-2021-hbert
%X Subtle and overt racism is still present both in physical and online communities today and has impacted many lives in different segments of the society. In this short piece of work, we present how we‘re tackling this societal issue with Natural Language Processing. We are releasing BiasCorp, a dataset containing 139,090 comments and news segment from three specific sources - Fox News, BreitbartNews and YouTube. The first batch (45,000 manually annotated) is ready for publication. We are currently in the final phase of manually labeling the remaining dataset using Amazon Mechanical Turk. BERT has been used widely in several downstream tasks. In this work, we present hBERT, where we modify certain layers of the pretrained BERT model with the new Hopfield Layer. hBert generalizes well across different distributions with the added advantage of a reduced model complexity. We are also releasing a JavaScript library 3 and a Chrome Extension Application, to help developers make use of our trained model in web applications (say chat application) and for users to identify and report racially biased contents on the web respectively
%U https://aclanthology.org/2021.ltedi-1.4/
%P 26-33
Markdown (Informal)
[hBERT + BiasCorp - Fighting Racism on the Web](https://aclanthology.org/2021.ltedi-1.4/) (Onabola et al., LTEDI 2021)
ACL
- Olawale Onabola, Zhuang Ma, Xie Yang, Benjamin Akera, Ibraheem Abdulrahman, Jia Xue, Dianbo Liu, and Yoshua Bengio. 2021. hBERT + BiasCorp - Fighting Racism on the Web. In Proceedings of the First Workshop on Language Technology for Equality, Diversity and Inclusion, pages 26–33, Kyiv. Association for Computational Linguistics.