References
- N. Cristianinian J. Shawe-Taylor, An introduction tosupport vector machines and other kernel-based learningmethods, Cambridge University Press, 2000
-
B. Sch
$\ddot{o}$ lkopf and A. J. Smola, Learning with kernels,MIT Press, 2002 - C. BishoP, 'NoveIty detection and neural networksvalidation, IEE Proceedings on Vision, Image, and Signal Processing, Special Issue on Apptications of Neural Networks, vol. 141, pp. 217-222, 1994
- D. Tax and R. Duin, 'Support Vector DomainDescription,' Pattern Recognition Letters, vol. 20, pp.1191-1199, 1999 https://doi.org/10.1016/S0167-8655(99)00087-2
- D. Tax, One-class classification, PhD Thesis, DelftUniversity of Technology, 2001
- B. Scholkopf, J. C. Platt, and A. J. Smola, Kernetmethod for percentite feature extraction, Technical Report MSR-TR-2000-22, Microso A Research, WA,2000
-
B. Sch
$\ddot{o}$ lkopf, J. C. Platt, J. Shawe-TayIor, and A. J.Smola, and R. C. Williamson, 'Estimating the supportof a high-dimensional distribution,' Neural Computation,vol.13, pp. 1443-1471, 2001 https://doi.org/10.1162/089976601750264965 -
G. Ratch, S. Mika, B. Sch
$\ddot{o}$ lkopf, and K.-R. M$\ddot{u}$ ller,'Constructing boosting algorithms from SVMs: Anapplication to one-class classification,' IEEETransactions on Pattern AnaIysis and MachineIntelligence, vol. 24, pp. 1-15, 2002 https://doi.org/10.1109/34.982881 - C. Campbell and K. P. Bennett, 'A linear programmingapproach to novelty detection,' Advances of NIPS 2000,pp. 395-401, 2000
- D. Tax and P. Juszczak, 'Kemel whitening forone-class classification,' Pattern Recognition with Support Vector Machines, pp. 40-52, 2002
- S. Boyd, L. ElGhaoui, E. Feron and V. Balakrishnan, Linear matrix inequalities in systems and control theory, SIAM Studies in Apptied Mathematics, Vot. 15, SIAM,Philadelphia, 1994
- P. Gahinet, A. Nemirovski, A. J. Laub and M. Chilali, LMI control toolbox, Math Works Inc., Natick, MA,1995
- K. Tsuda, 'Support vector classifiers with asymmetrickernel functions,' Proceedings of ESANN, PP. 183-188,1999
Cited by
- Ship Detection Using Edge-Based Segmentation and Histogram of Oriented Gradient with Ship Size Ratio vol.15, pp.4, 2015, https://doi.org/10.5391/IJFIS.2015.15.4.251
- Some Observations for Portfolio Management Applications of Modern Machine Learning Methods vol.16, pp.1, 2016, https://doi.org/10.5391/IJFIS.2016.16.1.44