Grade | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Total |
Texts | 235 | 320 | 386 | 321 | 281 | 252 | 145 | 58 | 134 | 86 | 26 | 109 | 2353 |
Readability of Chinese texts considered in this paper is a multi-class classification problem with $ 12 $ grade classes corresponding to $ 6 $ grades in primary schools, $ 3 $ grades in middle schools, and $ 3 $ grades in high schools. A special property of this problem is the strong ambiguity in determining the grades. To overcome the difficulty, a measurement of readability assessment methods used empirically in practice is adjacent accuracy in addition to exact accuracy. In this paper we give mathematical definitions of these concepts in a learning theory framework and compare these two quantities in terms of the ambiguity level of texts. A deep learning algorithm is proposed for readability of Chinese texts, based on convolutional neural networks and a pre-trained BERT model for vector representations of Chinese characters. The proposed CNN model can extract sentence and text features by convolutions of sentence representations with filters and is efficient for readability assessment, which is demonstrated with some numerical experiments.
Citation: |
Table 1. Number of Texts in Each Grade
Grade | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Total |
Texts | 235 | 320 | 386 | 321 | 281 | 252 | 145 | 58 | 134 | 86 | 26 | 109 | 2353 |
[1] | D. Chen and D. C. Manning, A fast and accurate dependency parser using neural networks, Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), (2014), 740–750. doi: 10.3115/v1/D14-1082. |
[2] | T. Cohn, Y. He and Y. Liu, Glove: Global vectors for word representation, Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), (2014), 1532–1543. |
[3] | E. Dale and J. S. Chall, The concept of readability, Elementary English, 26 (1949), 19-26. |
[4] | J. Devlin, M. W. Chang, K. Lee and K. Toutanova, Bert: Pre-training of deep bidirectional transformers for language understanding, Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, (2019), 4171–4186. |
[5] | Z. Fang, H. Feng, S. Huang and D. X. Zhou, Theory of deep convolutional neural networks II: Spherical analysis, Neural Networks, 131 (2020), 154-162. |
[6] | H. Feng, S. Huang and D. X. Zhou, Generalization analysis of CNNs for classification on spheres, IEEE Transactions on Neural Networks and Learning Systems, in press. |
[7] | J. R. Firth, A synopsis of linguistic theory 1930-55, Studies in Linguistic Analysis (Special Volume of the Philological Society), The Philological Society, (1957), 1–32. |
[8] | Y. Kim, Convolutional neural networks for sentence classification, Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), (2014), 1746–1751. |
[9] | A. Krizhevsky, I. Sutskever and E. Hinton, Imagenet classification with deep convolutional neural networks, Advances in Neural Information Processing Systems, 25 (2012), 1097-1105. |
[10] | Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, Gradient-based learning applied to document recognition, Proceedings of the IEEE, 86 (1998), 2278-2324. doi: 10.1109/5.726791. |
[11] | T. Mikolov, K. Chen, G. Corrado and J. Dean, Efficient estimation of word representations in vector space, ICLR, 2013. |
[12] | J. Zeng, Y. Xie, J. Lee and D. X. Zhou, CR-BERT: Chinese text readability method based on BERT and multi-level attention, preprint, (2022). |
[13] | D. X. Zhou, Universality of deep convolutional neural networks, Appl. Comput. Harmon. Anal., 48 (2020), 787-794. doi: 10.1016/j.acha.2019.06.004. |
[14] | D. X. Zhou, Deep distributed convolutional neural networks: Universality, Analysis and Applications, 16 (2018), 895-919. doi: 10.1142/S0219530518500124. |
[15] | D. X. Zhou, Theory of deep convolutional neural networks: Downsampling, Neural Networks, 124 (2020), 319-327. |
One Filter Instance
Two Inputs & Two Filters
Accuracy Curve by Epoch Number
Confusion Matrix
Scatter Plot