-
Antonio Cossidente
-
Francesco Pavese
Keywords:
Finite classical polar space, Maximal partial spread, Singer cycle, Segre variety
Abstract
Some constructions of maximal partial spreads of finite classical polar spaces are provided. In particular we show that, for $n \ge 1$, $\mathcal{H}(4n-1,q^2)$ has a maximal partial spread of size $q^{2n}+1$, $\mathcal{H}(4n+1,q^2)$ has a maximal partial spread of size $q^{2n+1}+1$ and, for $n \ge 2$, $\mathcal{Q}^+(4n-1,q)$, $\mathcal{Q}(4n-2,q)$, $\mathcal{W}(4n-1,q)$, $q$ even, $\mathcal{W}(4n-3,q)$, $q$ even, have a maximal partial spread of size $q^n+1$.
Author Biographies
Antonio Cossidente, Università degli Studi della Basilicata
Dipartimento di Matematica Informatica ed Economia
Francesco Pavese, Politecnico di Bari
Dipartimento di Meccanica Matematica e Management