Rinton Press - Publisher in Science and Technology
 

 
   

 

Editorial Board
Guidelines for Authors
QIC Online

Subscribers: to view the full text of a paper, click on the title of the paper. If you have any problem to access the full text, please check with your librarian or contact qic@rintonpress.com   To subscribe to QIC, please click Here.

Quantum Information and Computation     ISSN: 1533-7146      published since 2001
Vol.6 No.2 March 2006

The computational power of the W and GHZ states (pp173-183)
         Ellie D'Hondt and Prakash Panangaden
         
doi: https://doi.org/10.26421/QIC6.2-3

Abstracts: It is well understood that the use of quantum entanglement significantly enhances the computational power of systems. Much of the attention has focused on Bell states and their multipartite generalizations. However, in the multipartite case it is known that there are several inequivalent classes of states, such as those represented by the W-state and the GHZ-state. Our main contribution is a demonstration of the special computational power of these states in the context of paradigmatic problems from classical distributed computing. Concretely, we show that the W-state is the only pure state that can be used to exactly solve the problem of leader election in anonymous quantum networks. Similarly we show that the GHZ-state is the only one that can be used to solve the problem of distributed consensus when no classical post-processing is considered. These results generalize to a family of W- and GHZ-like states. At the heart of the proofs of these impossibility results lie symmetry arguments.
Key words: distributed algorithms, leader election, quantum computation, entangled states, W-state, GHZ-state